Low-cycle multiaxial random fatigue life prediction model based on equivalent stress transformation

IF 3.5 Q1 ENGINEERING, MULTIDISCIPLINARY
Yingbao He, Jianhui Liu, Feilong Hua, He Zhao, Jie Wang
{"title":"Low-cycle multiaxial random fatigue life prediction model based on equivalent stress transformation","authors":"Yingbao He, Jianhui Liu, Feilong Hua, He Zhao, Jie Wang","doi":"10.1108/ijsi-07-2022-0095","DOIUrl":null,"url":null,"abstract":"PurposeUnder multiaxial random loading, the material stress–strain response is not periodic, which makes it difficult to determine the direction of the critical plane on the material. Meanwhile, existing methods of constant loading cannot be directly applied to multiaxial random loading; this problem can be solved when an equivalent stress transformation method is used.Design/methodology/approachFirst, the Liu-Mahadevan critical plane is introduced into multiaxial random fatigue, which is enabled to determine the material's critical plane position under random loading. Then, an equivalent stress transformation method is proposed which can convert random load to constant load. Meanwhile, the ratio of mean stress to yield strength is defined as the new mean stress influence factor, and a new non-proportional additional strengthening factor is proposed by considering the effect of phase differences.FindingsThe proposed model is validated using multiaxial random fatigue test data of TC4 titanium alloy specimens and the results of the proposed model are compared with that based on Miner's rule and BSW model, showing that the proposed method is more accurate.Originality/valueIn this work, a new multiaxial random fatigue life prediction model is proposed based on equivalent stress transformation method, which considers the mean stress effect and the additional strengthening effect. Results show that the predicted fatigue lives given by the proposed model are in well accordance with the tested data.","PeriodicalId":45359,"journal":{"name":"International Journal of Structural Integrity","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijsi-07-2022-0095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

PurposeUnder multiaxial random loading, the material stress–strain response is not periodic, which makes it difficult to determine the direction of the critical plane on the material. Meanwhile, existing methods of constant loading cannot be directly applied to multiaxial random loading; this problem can be solved when an equivalent stress transformation method is used.Design/methodology/approachFirst, the Liu-Mahadevan critical plane is introduced into multiaxial random fatigue, which is enabled to determine the material's critical plane position under random loading. Then, an equivalent stress transformation method is proposed which can convert random load to constant load. Meanwhile, the ratio of mean stress to yield strength is defined as the new mean stress influence factor, and a new non-proportional additional strengthening factor is proposed by considering the effect of phase differences.FindingsThe proposed model is validated using multiaxial random fatigue test data of TC4 titanium alloy specimens and the results of the proposed model are compared with that based on Miner's rule and BSW model, showing that the proposed method is more accurate.Originality/valueIn this work, a new multiaxial random fatigue life prediction model is proposed based on equivalent stress transformation method, which considers the mean stress effect and the additional strengthening effect. Results show that the predicted fatigue lives given by the proposed model are in well accordance with the tested data.
基于等效应力变换的低周多轴随机疲劳寿命预测模型
目的在多轴随机加载下,材料的应力应变响应不具有周期性,使得材料上的临界平面方向难以确定。同时,现有的恒加载方法不能直接应用于多轴随机加载;采用等效应力变换法可以解决这一问题。设计/方法/途径首先,将Liu-Mahadevan临界面引入多轴随机疲劳,从而确定材料在随机载荷作用下的临界面位置。然后,提出了一种将随机荷载转换为恒定荷载的等效应力转换方法。同时,将平均应力与屈服强度之比定义为新的平均应力影响因子,并考虑相位差的影响,提出了新的非比例附加强化因子。结果采用TC4钛合金试件的多轴随机疲劳试验数据对所提模型进行了验证,并将所提模型与基于Miner’s规则和BSW模型的结果进行了比较,结果表明所提方法更为准确。基于等效应力转换法,考虑平均应力效应和附加强化效应,提出了一种新的多轴随机疲劳寿命预测模型。结果表明,该模型预测的疲劳寿命与试验数据吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Structural Integrity
International Journal of Structural Integrity ENGINEERING, MULTIDISCIPLINARY-
CiteScore
5.40
自引率
14.80%
发文量
42
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信