{"title":"Burning Rate of Wood Cribs with Controlled Airflow","authors":"S. McAllister, T. Grumstrup","doi":"10.1007/s10694-023-01466-9","DOIUrl":null,"url":null,"abstract":"<div><p>There is a dire need to improve our prediction capabilities of wildland fire behavior in a range of conditions from marginal burning to the most extreme. In order to develop a more physically-based operational wildland fire behavior model, we need to improve our understanding of the effect of ventilation on burning rate of fuel beds. In this work, wood cribs are used as a simplified fuel bed. A variety of crib designs were tested with stick sizes ranging from 0.32 cm to 1.27 cm and porosities ranging from densely packed to loosely packed. A pressurized box was built that allowed for a controlled flow rate of air through the cribs from 100 LPM to 1000 LPM. The mass loss rates with forced ventilation were compared to tests conducted outside of the box under unrestricted quiescent conditions. For the flow rates tested here, the burning rate was generally observed to increase with flow. The amount of air naturally induced into a crib while burning was deduced to be best related to the vent area and the square root of the stick spacing (A<sub>v</sub>s<sup>1/2</sup>). It was seen that the air-to-fuel ratio inside a fuel bed burning in quiescent conditions is approximately 1.11, indicating that over 75% of the air required to completely combust the pyrolysis gases is entrained in the plume. When the supplied air is less than the amount normally entrained in ambient burning, the crib is under-ventilated and the proportional reduction in the burning rate does not seem to depend on the crib characteristics. When the crib is over-ventilated, however, the relative increase in the burning rate does vary with crib design. Simple physical arguments were used to correlate the data. Future work will include testing at higher flow rates, different moisture contents, and with cribs built with multiple stick thicknesses.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"59 6","pages":"3473 - 3492"},"PeriodicalIF":2.3000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10694-023-01466-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10694-023-01466-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
There is a dire need to improve our prediction capabilities of wildland fire behavior in a range of conditions from marginal burning to the most extreme. In order to develop a more physically-based operational wildland fire behavior model, we need to improve our understanding of the effect of ventilation on burning rate of fuel beds. In this work, wood cribs are used as a simplified fuel bed. A variety of crib designs were tested with stick sizes ranging from 0.32 cm to 1.27 cm and porosities ranging from densely packed to loosely packed. A pressurized box was built that allowed for a controlled flow rate of air through the cribs from 100 LPM to 1000 LPM. The mass loss rates with forced ventilation were compared to tests conducted outside of the box under unrestricted quiescent conditions. For the flow rates tested here, the burning rate was generally observed to increase with flow. The amount of air naturally induced into a crib while burning was deduced to be best related to the vent area and the square root of the stick spacing (Avs1/2). It was seen that the air-to-fuel ratio inside a fuel bed burning in quiescent conditions is approximately 1.11, indicating that over 75% of the air required to completely combust the pyrolysis gases is entrained in the plume. When the supplied air is less than the amount normally entrained in ambient burning, the crib is under-ventilated and the proportional reduction in the burning rate does not seem to depend on the crib characteristics. When the crib is over-ventilated, however, the relative increase in the burning rate does vary with crib design. Simple physical arguments were used to correlate the data. Future work will include testing at higher flow rates, different moisture contents, and with cribs built with multiple stick thicknesses.
期刊介绍:
Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis.
The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large.
It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.