A. Sedelnikova, Yuliya Poletaeva, V. Golyshev, A. Chubarov, E. Dmitrienko
{"title":"Preparation of Magnetic Molecularly Imprinted Polymer for Methylene Blue Capture","authors":"A. Sedelnikova, Yuliya Poletaeva, V. Golyshev, A. Chubarov, E. Dmitrienko","doi":"10.3390/magnetochemistry9080196","DOIUrl":null,"url":null,"abstract":"Hybrid magnetic molecularly imprinted polymers (MMIPs) have the advantages of the technology of molecularly imprinted material and magnetic nanoparticles. The magnetic properties of MMIPs allow easy magnetic separation of various pollutants and analytes. A convenient and simple approach has been developed for the preparation of MMIPs based on polyamide (nylon-6) and magnetic nanoparticles. The polymer matrix was formed during the transition of nylon-6 from a dissolved state to a solid state in the presence of template molecules and Fe3O4 nanoparticles in the initial solution. Methylene blue (MB) was used as a model imprinted template molecule. The MMIPs exhibited a maximum adsorption amount of MB reached 110 µmol/g. The selectivity coefficients toward MB structural analogs were estimated to be 6.1 ± 0.6 and 2.1 ± 0.3 for 15 μM hydroxyethylphenazine and toluidine blue, which shows high MMIP selectivity. To prove the MMIPs’ specificity in MB recognition, magnetic nonimprinted polymers (MNIPs) were synthesized without the presence of a template molecule. MMIPs exhibited much higher specificity in comparison to MNIPs. To show the remarkable reusability of the MMIP sorbent, more than four MB absorption and release cycles were carried out, demonstrating almost the same extraction capacity step by step. We believe that the proposed molecular imprinting technology, shown in the MB magnetic separation example, will bring new advances in the area of MMIPs for various applications.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry9080196","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 1
Abstract
Hybrid magnetic molecularly imprinted polymers (MMIPs) have the advantages of the technology of molecularly imprinted material and magnetic nanoparticles. The magnetic properties of MMIPs allow easy magnetic separation of various pollutants and analytes. A convenient and simple approach has been developed for the preparation of MMIPs based on polyamide (nylon-6) and magnetic nanoparticles. The polymer matrix was formed during the transition of nylon-6 from a dissolved state to a solid state in the presence of template molecules and Fe3O4 nanoparticles in the initial solution. Methylene blue (MB) was used as a model imprinted template molecule. The MMIPs exhibited a maximum adsorption amount of MB reached 110 µmol/g. The selectivity coefficients toward MB structural analogs were estimated to be 6.1 ± 0.6 and 2.1 ± 0.3 for 15 μM hydroxyethylphenazine and toluidine blue, which shows high MMIP selectivity. To prove the MMIPs’ specificity in MB recognition, magnetic nonimprinted polymers (MNIPs) were synthesized without the presence of a template molecule. MMIPs exhibited much higher specificity in comparison to MNIPs. To show the remarkable reusability of the MMIP sorbent, more than four MB absorption and release cycles were carried out, demonstrating almost the same extraction capacity step by step. We believe that the proposed molecular imprinting technology, shown in the MB magnetic separation example, will bring new advances in the area of MMIPs for various applications.
期刊介绍:
Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.