Ali Golkarian , Khabat Khosravi , Mahdi Panahi , John J. Clague
{"title":"Spatial variability of soil water erosion: Comparing empirical and intelligent techniques","authors":"Ali Golkarian , Khabat Khosravi , Mahdi Panahi , John J. Clague","doi":"10.1016/j.gsf.2022.101456","DOIUrl":null,"url":null,"abstract":"<div><p>Soil water erosion (SWE) is an important global hazard that affects food availability through soil degradation, a reduction in crop yield, and agricultural land abandonment. A map of soil erosion susceptibility is a first and vital step in land management and soil conservation. Several machine learning (ML) algorithms optimized using the Grey Wolf Optimizer (GWO) metaheuristic algorithm can be used to accurately map SWE susceptibility. These optimized algorithms include Convolutional Neural Networks (CNN and CNN-GWO), Support Vector Machine (SVM and SVM-GWO), and Group Method of Data Handling (GMDH and GMDH-GWO). Results obtained using these algorithms can be compared with the well-known Revised Universal Soil Loss Equation (RUSLE) empirical model and Extreme Gradient Boosting (XGBoost) ML tree-based models. We apply these methods together with the frequency ratio (FR) model and the Information Gain Ratio (IGR) to determine the relationship between historical SWE data and controlling geo-environmental factors at 116 sites in the Noor-Rood watershed in northern Iran. Fourteen SWE geo-environmental factors are classified in topographical, hydro-climatic, land cover, and geological groups. We next divided the SWE sites into two datasets, one for model training (70% of the samples = 81 locations) and the other for model validation (30% of the samples = 35 locations). Finally the model-generated maps were evaluated using the Area under the Receiver Operating Characteristic (AU-ROC) curve. Our results show that elevation and rainfall erosivity have the greatest influence on SWE, while soil texture and hydrology are less important. The CNN-GWO model (AU-ROC = 0.85) outperformed other models, specifically, and in order, SVR-GWO = GMDH-GWO (AUC = 0.82), CNN = GMDH (AUC = 0.81), SVR = XGBoost (AUC = 0.80), and RULSE. Based on the RUSLE model, soil loss in the Noor-Rood watershed ranges from 0 to 2644 t ha<sup>–1</sup>yr<sup>−1</sup>.</p></div>","PeriodicalId":12711,"journal":{"name":"Geoscience frontiers","volume":"14 1","pages":"Article 101456"},"PeriodicalIF":8.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience frontiers","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674987122001098","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8
Abstract
Soil water erosion (SWE) is an important global hazard that affects food availability through soil degradation, a reduction in crop yield, and agricultural land abandonment. A map of soil erosion susceptibility is a first and vital step in land management and soil conservation. Several machine learning (ML) algorithms optimized using the Grey Wolf Optimizer (GWO) metaheuristic algorithm can be used to accurately map SWE susceptibility. These optimized algorithms include Convolutional Neural Networks (CNN and CNN-GWO), Support Vector Machine (SVM and SVM-GWO), and Group Method of Data Handling (GMDH and GMDH-GWO). Results obtained using these algorithms can be compared with the well-known Revised Universal Soil Loss Equation (RUSLE) empirical model and Extreme Gradient Boosting (XGBoost) ML tree-based models. We apply these methods together with the frequency ratio (FR) model and the Information Gain Ratio (IGR) to determine the relationship between historical SWE data and controlling geo-environmental factors at 116 sites in the Noor-Rood watershed in northern Iran. Fourteen SWE geo-environmental factors are classified in topographical, hydro-climatic, land cover, and geological groups. We next divided the SWE sites into two datasets, one for model training (70% of the samples = 81 locations) and the other for model validation (30% of the samples = 35 locations). Finally the model-generated maps were evaluated using the Area under the Receiver Operating Characteristic (AU-ROC) curve. Our results show that elevation and rainfall erosivity have the greatest influence on SWE, while soil texture and hydrology are less important. The CNN-GWO model (AU-ROC = 0.85) outperformed other models, specifically, and in order, SVR-GWO = GMDH-GWO (AUC = 0.82), CNN = GMDH (AUC = 0.81), SVR = XGBoost (AUC = 0.80), and RULSE. Based on the RUSLE model, soil loss in the Noor-Rood watershed ranges from 0 to 2644 t ha–1yr−1.
Geoscience frontiersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
17.80
自引率
3.40%
发文量
147
审稿时长
35 days
期刊介绍:
Geoscience Frontiers (GSF) is the Journal of China University of Geosciences (Beijing) and Peking University. It publishes peer-reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences. GSF covers various research areas including petrology and geochemistry, lithospheric architecture and mantle dynamics, global tectonics, economic geology and fuel exploration, geophysics, stratigraphy and paleontology, environmental and engineering geology, astrogeology, and the nexus of resources-energy-emissions-climate under Sustainable Development Goals. The journal aims to bridge innovative, provocative, and challenging concepts and models in these fields, providing insights on correlations and evolution.