Bounds for the chi-square approximation of Friedman’s statistic by Stein’s method

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Robert E. Gaunt, G. Reinert
{"title":"Bounds for the chi-square approximation of Friedman’s statistic by Stein’s method","authors":"Robert E. Gaunt, G. Reinert","doi":"10.3150/22-bej1530","DOIUrl":null,"url":null,"abstract":"Friedman's chi-square test is a non-parametric statistical test for $r\\geq2$ treatments across $n\\ge1$ trials to assess the null hypothesis that there is no treatment effect. We use Stein's method with an exchangeable pair coupling to derive an explicit bound on the distance between the distribution of Friedman's statistic and its limiting chi-square distribution, measured using smooth test functions. Our bound is of the optimal order $n^{-1}$, and also has an optimal dependence on the parameter $r$, in that the bound tends to zero if and only if $r/n\\rightarrow0$. From this bound, we deduce a Kolmogorov distance bound that decays to zero under the weaker condition $r^{1/2}/n\\rightarrow0$.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/22-bej1530","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8

Abstract

Friedman's chi-square test is a non-parametric statistical test for $r\geq2$ treatments across $n\ge1$ trials to assess the null hypothesis that there is no treatment effect. We use Stein's method with an exchangeable pair coupling to derive an explicit bound on the distance between the distribution of Friedman's statistic and its limiting chi-square distribution, measured using smooth test functions. Our bound is of the optimal order $n^{-1}$, and also has an optimal dependence on the parameter $r$, in that the bound tends to zero if and only if $r/n\rightarrow0$. From this bound, we deduce a Kolmogorov distance bound that decays to zero under the weaker condition $r^{1/2}/n\rightarrow0$.
用斯坦方法求得弗里德曼统计量的卡方近似的边界
Friedman卡方检验是对$n\ge1$试验中$r\geq2$治疗的非参数统计检验,用于评估没有治疗效果的零假设。我们使用具有可交换对耦合的Stein方法来导出Friedman统计量的分布与其极限卡方分布之间的距离的显式界,该距离是使用光滑测试函数测量的。我们的界是最优阶$n^{-1}$,并且对参数$r$也有最优依赖性,因为当且仅当$r/n\rightarrow0$时,界趋于零。从这个界,我们推导出一个Kolmogorov距离界,它在较弱的条件$r^{1/2}/n\rightarrow0$下衰变为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信