Effect of Cr3+ Doping on Magnetic Properties of Zn-Mg Ferrite Nanoparticles

IF 2.6 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Xiaogang Yu, Renpeng Yang, Chengwei Wu, Boqi Liu, W. Zhang
{"title":"Effect of Cr3+ Doping on Magnetic Properties of Zn-Mg Ferrite Nanoparticles","authors":"Xiaogang Yu, Renpeng Yang, Chengwei Wu, Boqi Liu, W. Zhang","doi":"10.3390/magnetochemistry9070181","DOIUrl":null,"url":null,"abstract":"Zn0.6Mg0.4CrxFe2−xO4 (0 ≤ x ≤ 0.4) nanoparticles were synthesized using a hydrothermal technique. The obtained magnetic nanoparticles (MNPs) exhibited a spinel structure, where the lattice constant decreased with the Cr3+ ion content. The doping of Cr3+ ion (x = 0.1) increased the specific saturation magnetization to 46.4 emu/g but decreased to 20.0 emu/g with the further increase in the Cr3+ ion content to x = 0.4. The decrement in Curie temperature was ascribed to the weakened super-exchange interaction between the metal ions located at A-sites and B-sites, which arose from the doping of the Cr3+ ion. The T2-weighted images gradually darkened with the increase in Zn0.6Mg0.4Cr0.1Fe1.9O4 nanoparticles concentration, suggesting that the nanoparticles can enhance the image contrast. Zn0.6Mg0.4CrxFe2−xO4 (0 ≤ x ≤ 0.4) nanoparticles were able to heat the agar phantom to the hyperthermia temperature under the safe alternating magnetic field, which showed their potential in the magnetic induction hyperthermia.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry9070181","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Zn0.6Mg0.4CrxFe2−xO4 (0 ≤ x ≤ 0.4) nanoparticles were synthesized using a hydrothermal technique. The obtained magnetic nanoparticles (MNPs) exhibited a spinel structure, where the lattice constant decreased with the Cr3+ ion content. The doping of Cr3+ ion (x = 0.1) increased the specific saturation magnetization to 46.4 emu/g but decreased to 20.0 emu/g with the further increase in the Cr3+ ion content to x = 0.4. The decrement in Curie temperature was ascribed to the weakened super-exchange interaction between the metal ions located at A-sites and B-sites, which arose from the doping of the Cr3+ ion. The T2-weighted images gradually darkened with the increase in Zn0.6Mg0.4Cr0.1Fe1.9O4 nanoparticles concentration, suggesting that the nanoparticles can enhance the image contrast. Zn0.6Mg0.4CrxFe2−xO4 (0 ≤ x ≤ 0.4) nanoparticles were able to heat the agar phantom to the hyperthermia temperature under the safe alternating magnetic field, which showed their potential in the magnetic induction hyperthermia.
Cr3+掺杂对纳米Zn-Mg铁氧体磁性能的影响
采用水热法合成了Zn0.6Mg0.4CrxFe2−xO4(0≤x≤0.4)纳米颗粒。制备的磁性纳米颗粒呈尖晶石结构,晶格常数随Cr3+离子含量的增加而减小。当掺杂Cr3+离子(x = 0.1)时,比饱和磁化强度提高到46.4 emu/g,当Cr3+离子含量进一步增加到x = 0.4时,比饱和磁化强度降低到20.0 emu/g。居里温度的下降是由于Cr3+离子的掺杂导致a位和b位金属离子之间的超交换作用减弱所致。随着zn0.6 mg0.4 cr0.1 fe1.90 o4纳米颗粒浓度的增加,t2加权图像逐渐变暗,表明纳米颗粒可以增强图像对比度。Zn0.6Mg0.4CrxFe2−xO4(0≤x≤0.4)纳米粒子能够在安全交变磁场下将琼脂幻影加热到热疗温度,显示出其在磁感应热疗中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Magnetochemistry
Magnetochemistry Chemistry-Chemistry (miscellaneous)
CiteScore
3.90
自引率
11.10%
发文量
145
审稿时长
11 weeks
期刊介绍: Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信