{"title":"Efficient solvent suppression with adiabatic inversion for 1H-detected solid-state NMR","authors":"Tatsuya Matsunaga, Ryotaro Okabe, Yoshitaka Ishii","doi":"10.1007/s10858-021-00384-8","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces a conceptually new solvent suppression scheme with adiabatic inversion pulses for <sup>1</sup>H-detected multidimensional solid-state NMR (SSNMR) of biomolecules and other systems, which is termed “Solvent suppression of Liquid signal with Adiabatic Pulse” (SLAP). <sup>1</sup>H-detected 2D <sup>13</sup>C/<sup>1</sup>H SSNMR data of uniformly <sup>13</sup>C- and <sup>15</sup>N-labeled GB1 sample using ultra-fast magic angle spinning at a spinning rate of 60 kHz demonstrated that the SLAP scheme showed up to 3.5-fold better solvent suppression performance over a traditional solvent-suppression scheme for SSNMR, MISSISSIPPI (Zhou and Rienstra, J Magn Reson 192:167–172, 2008) with 2/3 of the average RF power.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10858-021-00384-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
This study introduces a conceptually new solvent suppression scheme with adiabatic inversion pulses for 1H-detected multidimensional solid-state NMR (SSNMR) of biomolecules and other systems, which is termed “Solvent suppression of Liquid signal with Adiabatic Pulse” (SLAP). 1H-detected 2D 13C/1H SSNMR data of uniformly 13C- and 15N-labeled GB1 sample using ultra-fast magic angle spinning at a spinning rate of 60 kHz demonstrated that the SLAP scheme showed up to 3.5-fold better solvent suppression performance over a traditional solvent-suppression scheme for SSNMR, MISSISSIPPI (Zhou and Rienstra, J Magn Reson 192:167–172, 2008) with 2/3 of the average RF power.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.