Electret prevents the formation of bacterial biofilm

IF 3.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhipeng Sun, Hongbao Wang, Xin Guo, Jiajie Xu, Hejuan Liang, Jian Jiang, Yuanyuan Liang
{"title":"Electret prevents the formation of bacterial biofilm","authors":"Zhipeng Sun,&nbsp;Hongbao Wang,&nbsp;Xin Guo,&nbsp;Jiajie Xu,&nbsp;Hejuan Liang,&nbsp;Jian Jiang,&nbsp;Yuanyuan Liang","doi":"10.1049/nde2.12051","DOIUrl":null,"url":null,"abstract":"<p>Bacterial biofilm formation is an important factor in bacterial resistance. The commonly used methods to inhibit bacterial biofilms are synthetic drugs such as antimicrobial peptides, but physical methods are often safe, non-toxic and simple to prepare. This work proposes an environmentally friendly method to use electret films to provide a stable electric field during the formation of bacterial biofilms, inhibit the formation of bacterial biofilms through the action of the electric field and weaken the adhesion of bacterial biofilms. The total amount of <i>Staphylococcus aureus</i> biofilm decreased by 20% compared to the control group after the treatment of positive electret. The distribution of exopolysaccharides showed that the activity of biofilm also decreased. In addition, the negative electret can also inhibit the formation of bacterial biofilm. The result can be generalised to other Gram-positive bacteria and could contribute to reduce the resistance of bacteria, improve the effect of related antibiotics, reduce the dosage of antibiotics and reduce the side effects of drugs.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"6 2","pages":"57-63"},"PeriodicalIF":3.8000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12051","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Nanodielectrics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

Bacterial biofilm formation is an important factor in bacterial resistance. The commonly used methods to inhibit bacterial biofilms are synthetic drugs such as antimicrobial peptides, but physical methods are often safe, non-toxic and simple to prepare. This work proposes an environmentally friendly method to use electret films to provide a stable electric field during the formation of bacterial biofilms, inhibit the formation of bacterial biofilms through the action of the electric field and weaken the adhesion of bacterial biofilms. The total amount of Staphylococcus aureus biofilm decreased by 20% compared to the control group after the treatment of positive electret. The distribution of exopolysaccharides showed that the activity of biofilm also decreased. In addition, the negative electret can also inhibit the formation of bacterial biofilm. The result can be generalised to other Gram-positive bacteria and could contribute to reduce the resistance of bacteria, improve the effect of related antibiotics, reduce the dosage of antibiotics and reduce the side effects of drugs.

Abstract Image

驻极体防止细菌生物膜的形成
细菌生物膜的形成是细菌耐药的重要因素。抑制细菌生物膜的常用方法是合成药物,如抗菌肽,但物理方法往往安全、无毒、制备简单。本工作提出了一种环保的方法,利用驻极体膜在细菌生物膜形成过程中提供稳定的电场,通过电场的作用抑制细菌生物膜的形成,减弱细菌生物膜的粘附。经驻极体阳性处理后,金黄色葡萄球菌生物膜总量较对照组减少20%。胞外多糖的分布也表明生物膜的活性降低。此外,负驻极体还能抑制细菌生物膜的形成。该结果可推广到其他革兰氏阳性菌,有助于降低细菌耐药性,改善相关抗生素的效果,减少抗生素的用量,减少药物的副作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Nanodielectrics
IET Nanodielectrics Materials Science-Materials Chemistry
CiteScore
5.60
自引率
3.70%
发文量
7
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信