{"title":"Tensile, Fatigue Properties and Their Anisotropies of Al-Mg Alloy Fabricated by Wire-Arc Additive Manufacturing.","authors":"Zixiang Zhou, Jiqiang Chen, Jieke Ren, Jiale Miao, Ting Xing, Shibiao Zhong, Renguo Guan","doi":"10.1089/3dp.2022.0348","DOIUrl":null,"url":null,"abstract":"<p><p>The microstructure, mechanical properties (tensile, fatigue, etc.) and the anisotropies of the Al-Mg alloy fabricated by wire arc additive manufacturing are studied in this work. The results show that the microstructure of the deposited alloy is composed of coarse columnar grains in the inner-layer region and fine equiaxed grains in the interlayer region. The tensile and fatigue properties exhibit strong anisotropies. The ultimate tensile strength (258 MPa), yield strength (140 MPa), elongation (21.3%), and fatigue life (2.56 × 10<sup>5</sup>) of the sample along travel direction (0° direction) are the best, whereas those of the sample along the deposited direction (90° direction) are the lowest and those of the sample along 45° direction are the medium. It is found that the lowest strength and elongation of the sample in the deposited direction can be attributed to the large weak bonding areas between the deposition layers, whereas the lowest fatigue property is associated with the fatigue crack propagation along the grain boundaries of the columnar grains.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442355/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0348","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The microstructure, mechanical properties (tensile, fatigue, etc.) and the anisotropies of the Al-Mg alloy fabricated by wire arc additive manufacturing are studied in this work. The results show that the microstructure of the deposited alloy is composed of coarse columnar grains in the inner-layer region and fine equiaxed grains in the interlayer region. The tensile and fatigue properties exhibit strong anisotropies. The ultimate tensile strength (258 MPa), yield strength (140 MPa), elongation (21.3%), and fatigue life (2.56 × 105) of the sample along travel direction (0° direction) are the best, whereas those of the sample along the deposited direction (90° direction) are the lowest and those of the sample along 45° direction are the medium. It is found that the lowest strength and elongation of the sample in the deposited direction can be attributed to the large weak bonding areas between the deposition layers, whereas the lowest fatigue property is associated with the fatigue crack propagation along the grain boundaries of the columnar grains.
期刊介绍:
3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged.
The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.