Pushpendra Kumar, V. S. Erturk, M. Murillo‐Arcila, C. Harley
{"title":"Generalized forms of fractional Euler and Runge–Kutta methods using non-uniform grid","authors":"Pushpendra Kumar, V. S. Erturk, M. Murillo‐Arcila, C. Harley","doi":"10.1515/ijnsns-2021-0278","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we propose generalized forms of three well-known fractional numerical methods namely Euler, Runge–Kutta 2-step, and Runge–Kutta 4-step, respectively. The new versions we provide of these methods are derived by utilizing a non-uniform grid which is slightly different from previous versions of these algorithms. A new generalized form of the well-known Caputo-type fractional derivative is used to derive the results. All necessary analyses related to the stability, convergence, and error bounds are also provided. The precision of all simulated results is justified by performing multiple numerical experiments, with some meaningful problems solved by implementing the code in Mathematica. Finally, we give a brief discussion on the simulated results which shows that the generalized methods are novel, effective, reliable, and very easy to implement.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0278","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8
Abstract
Abstract In this article, we propose generalized forms of three well-known fractional numerical methods namely Euler, Runge–Kutta 2-step, and Runge–Kutta 4-step, respectively. The new versions we provide of these methods are derived by utilizing a non-uniform grid which is slightly different from previous versions of these algorithms. A new generalized form of the well-known Caputo-type fractional derivative is used to derive the results. All necessary analyses related to the stability, convergence, and error bounds are also provided. The precision of all simulated results is justified by performing multiple numerical experiments, with some meaningful problems solved by implementing the code in Mathematica. Finally, we give a brief discussion on the simulated results which shows that the generalized methods are novel, effective, reliable, and very easy to implement.
期刊介绍:
The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.