Short-term effect of filamentous macroalgae Chaetomorpha linum on Cymodocea nodosa: Does clonal integration alleviate macroalgae impacts?

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Imen ZRIBI , H. Ellouzi , I. Mnasri , N. Abdelkader , A. Ben Hmida , S. Dorai , A. Debez , F. Charfi-Cheikhrouha , R. Zakhama-Sraieb
{"title":"Short-term effect of filamentous macroalgae Chaetomorpha linum on Cymodocea nodosa: Does clonal integration alleviate macroalgae impacts?","authors":"Imen ZRIBI ,&nbsp;H. Ellouzi ,&nbsp;I. Mnasri ,&nbsp;N. Abdelkader ,&nbsp;A. Ben Hmida ,&nbsp;S. Dorai ,&nbsp;A. Debez ,&nbsp;F. Charfi-Cheikhrouha ,&nbsp;R. Zakhama-Sraieb","doi":"10.1016/j.aquabot.2023.103659","DOIUrl":null,"url":null,"abstract":"<div><p>Seagrasses are clonal plants that can form meadows in shallow coastal water. Under natural conditions, drift macroalgae can be found associated with seagrass but when facilitated by high nutrient input, opportunistic macroalgae can grow excessively and form mats that impose stressful and highly competitive conditions for seagrasses. In this study, we experimentally investigate the ecological significance of clonal integration in the ability of <em>Cymodocea nodosa</em> to tolerate biotic stress triggered by interactions with the drift macroalgae <em>Chaeotomorpha linum.</em> Our findings provide little support for the hypothesis that clonal integration can influence <em>C. nodosa</em> response to stress, as disconnected plants did not show significant differences in structural and morphological characteristics compared to intact plants. However, the physiological analysis suggests that <em>C. nodosa</em> may still benefit from shared resources with neighbouring plants to mitigate stress caused by <em>C. linum</em>. Moreover, the results indicate that <em>C. nodosa</em> adapts to the presence of the filamentous drift macroalgae <em>C. linum</em> by increasing leaf photosynthetic content, reducing growth rate, and modulating its morphology, regardless of its integration status.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030437702300044X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Seagrasses are clonal plants that can form meadows in shallow coastal water. Under natural conditions, drift macroalgae can be found associated with seagrass but when facilitated by high nutrient input, opportunistic macroalgae can grow excessively and form mats that impose stressful and highly competitive conditions for seagrasses. In this study, we experimentally investigate the ecological significance of clonal integration in the ability of Cymodocea nodosa to tolerate biotic stress triggered by interactions with the drift macroalgae Chaeotomorpha linum. Our findings provide little support for the hypothesis that clonal integration can influence C. nodosa response to stress, as disconnected plants did not show significant differences in structural and morphological characteristics compared to intact plants. However, the physiological analysis suggests that C. nodosa may still benefit from shared resources with neighbouring plants to mitigate stress caused by C. linum. Moreover, the results indicate that C. nodosa adapts to the presence of the filamentous drift macroalgae C. linum by increasing leaf photosynthetic content, reducing growth rate, and modulating its morphology, regardless of its integration status.

Abstract Image

丝状大型藻类Chaetomorpha linum对结节状小蠊的短期影响:克隆整合能减轻大型藻类的影响吗?
海草是无性系植物,可在浅海水域形成草甸。在自然条件下,可以发现漂流大藻与海草有关,但在高营养投入的促进下,机会主义大藻可以过度生长并形成草席,对海草施加压力和高度竞争的条件。在这项研究中,我们通过实验研究了克隆整合在Cymodocea nodosa耐受由与漂流巨藻Chaeotomorpha linum相互作用引发的生物胁迫能力中的生态学意义。我们的研究结果几乎不支持克隆整合可以影响野刺草对胁迫的反应的假设,因为断开的植株与完整的植株相比,在结构和形态特征上没有显着差异。然而,生理分析表明,结瘤草可能仍然受益于与邻近植物共享资源,以减轻林草造成的胁迫。此外,结果表明,无论其整合状态如何,结藻都通过提高叶片光合含量、降低生长速率和调节其形态来适应丝状漂移大藻的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信