Composition optimization of PLA/PPC/HNT nanocomposites for mandibular fixation plate using single-factor experimental design.

I. Haneef, Y. Buys, N. Shaffiar, A. A. Abdul Hamid, S. I. S. Shaharuddin, Fitriani
{"title":"Composition optimization of PLA/PPC/HNT nanocomposites for mandibular fixation plate using single-factor experimental design.","authors":"I. Haneef, Y. Buys, N. Shaffiar, A. A. Abdul Hamid, S. I. S. Shaharuddin, Fitriani","doi":"10.2139/ssrn.4148312","DOIUrl":null,"url":null,"abstract":"The need to overcome the secondary surgery to remove implanted metal fixation plate leads to the idea of replacing the material with degradable bionanocomposite. In this research, polylactic acid/polypropylene (PLA/PPC) blends incorporated with halloysite nanotubes (HNT) (0-6 wt %) were considered as the candidate material for mandibular fixation plate. A single-factor design using Design Expert software was used to determine 20 different compositions of PLA/PPC/HNT nanocomposites and their mechanical properties were then measured. The optimization of the PLA/PPC/HNT nanocomposite composition was performed based on the nanocomposite's response to Young's modulus, tensile strength, and elongation at break. Further analysis suggested an optimum composition of 92.5/7.5 PLA/PPC with 6 wt % of HNT. The statistical results predicted that there was a 71.7% possibility that the proposed nanocomposite would have the following mechanical properties: Young's modulus of 2.18 GPa, a tensile strength of 64.16 MPa, and an elongation at break of 106.53%.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"135 1","pages":"105423"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the mechanical behavior of biomedical materials","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.2139/ssrn.4148312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The need to overcome the secondary surgery to remove implanted metal fixation plate leads to the idea of replacing the material with degradable bionanocomposite. In this research, polylactic acid/polypropylene (PLA/PPC) blends incorporated with halloysite nanotubes (HNT) (0-6 wt %) were considered as the candidate material for mandibular fixation plate. A single-factor design using Design Expert software was used to determine 20 different compositions of PLA/PPC/HNT nanocomposites and their mechanical properties were then measured. The optimization of the PLA/PPC/HNT nanocomposite composition was performed based on the nanocomposite's response to Young's modulus, tensile strength, and elongation at break. Further analysis suggested an optimum composition of 92.5/7.5 PLA/PPC with 6 wt % of HNT. The statistical results predicted that there was a 71.7% possibility that the proposed nanocomposite would have the following mechanical properties: Young's modulus of 2.18 GPa, a tensile strength of 64.16 MPa, and an elongation at break of 106.53%.
单因素实验设计优化PLA/PPC/HNT纳米复合材料下颌骨固定板的组成。
由于需要克服移除植入金属固定板的二次手术,因此产生了用可降解生物纳米复合材料代替材料的想法。在本研究中,聚乳酸/聚丙烯(PLA/PPC)共混物加入高岭土纳米管(HNT) (0-6 wt %)被认为是下颌固定板的候选材料。采用design Expert软件进行单因素设计,确定了20种不同组成的PLA/PPC/HNT纳米复合材料的力学性能。基于纳米复合材料对杨氏模量、拉伸强度和断裂伸长率的响应,对PLA/PPC/HNT纳米复合材料进行了优化。进一步分析表明,最佳配比为92.5/7.5 PLA/PPC, HNT质量分数为6wt %。统计结果预测,该纳米复合材料具有以下力学性能的可能性为71.7%:杨氏模量为2.18 GPa,抗拉强度为64.16 MPa,断裂伸长率为106.53%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信