{"title":"Spatial mixture modeling for analyzing a rainfall pattern: A case study in Ireland","authors":"A. Hussein, Safaa. K. Kadhem","doi":"10.1515/eng-2022-0024","DOIUrl":null,"url":null,"abstract":"Abstract This study investigates the spatial heterogeneity in the maximum monthly rainfall amounts reported by stations in Ireland from January 2018 to December 2020. The heterogeneity is modeled by the Bayesian normal mixture model with different ranks. The selection of the best model or the degree of heterogeneity is implemented using four criteria which are the modified Akaike information criterion, the modified Bayesian information criterion, the deviance information criterion, and the widely applicable information criterion. The estimation and model selection process is implemented using the Gibbs sampling. The results show that the maximum monthly rainfall amounts are accommodated in two and three components. The goodness of fit for the selected models is checked using the graphical plots including the probability density function and cumulative distribution function. This article also contributes via the spatial determination of return level or rainfall amounts at risk with different return periods using the prediction intervals constructed from the posterior predictive distribution.","PeriodicalId":19512,"journal":{"name":"Open Engineering","volume":"12 1","pages":"204 - 214"},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eng-2022-0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract This study investigates the spatial heterogeneity in the maximum monthly rainfall amounts reported by stations in Ireland from January 2018 to December 2020. The heterogeneity is modeled by the Bayesian normal mixture model with different ranks. The selection of the best model or the degree of heterogeneity is implemented using four criteria which are the modified Akaike information criterion, the modified Bayesian information criterion, the deviance information criterion, and the widely applicable information criterion. The estimation and model selection process is implemented using the Gibbs sampling. The results show that the maximum monthly rainfall amounts are accommodated in two and three components. The goodness of fit for the selected models is checked using the graphical plots including the probability density function and cumulative distribution function. This article also contributes via the spatial determination of return level or rainfall amounts at risk with different return periods using the prediction intervals constructed from the posterior predictive distribution.
期刊介绍:
Open Engineering publishes research results of wide interest in emerging interdisciplinary and traditional engineering fields, including: electrical and computer engineering, civil and environmental engineering, mechanical and aerospace engineering, material science and engineering. The journal is designed to facilitate the exchange of innovative and interdisciplinary ideas between researchers from different countries. Open Engineering is a peer-reviewed, English language journal. Researchers from non-English speaking regions are provided with free language correction by scientists who are native speakers. Additionally, each published article is widely promoted to researchers working in the same field.