Spatial mixture modeling for analyzing a rainfall pattern: A case study in Ireland

IF 1.5 Q2 ENGINEERING, MULTIDISCIPLINARY
A. Hussein, Safaa. K. Kadhem
{"title":"Spatial mixture modeling for analyzing a rainfall pattern: A case study in Ireland","authors":"A. Hussein, Safaa. K. Kadhem","doi":"10.1515/eng-2022-0024","DOIUrl":null,"url":null,"abstract":"Abstract This study investigates the spatial heterogeneity in the maximum monthly rainfall amounts reported by stations in Ireland from January 2018 to December 2020. The heterogeneity is modeled by the Bayesian normal mixture model with different ranks. The selection of the best model or the degree of heterogeneity is implemented using four criteria which are the modified Akaike information criterion, the modified Bayesian information criterion, the deviance information criterion, and the widely applicable information criterion. The estimation and model selection process is implemented using the Gibbs sampling. The results show that the maximum monthly rainfall amounts are accommodated in two and three components. The goodness of fit for the selected models is checked using the graphical plots including the probability density function and cumulative distribution function. This article also contributes via the spatial determination of return level or rainfall amounts at risk with different return periods using the prediction intervals constructed from the posterior predictive distribution.","PeriodicalId":19512,"journal":{"name":"Open Engineering","volume":"12 1","pages":"204 - 214"},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eng-2022-0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract This study investigates the spatial heterogeneity in the maximum monthly rainfall amounts reported by stations in Ireland from January 2018 to December 2020. The heterogeneity is modeled by the Bayesian normal mixture model with different ranks. The selection of the best model or the degree of heterogeneity is implemented using four criteria which are the modified Akaike information criterion, the modified Bayesian information criterion, the deviance information criterion, and the widely applicable information criterion. The estimation and model selection process is implemented using the Gibbs sampling. The results show that the maximum monthly rainfall amounts are accommodated in two and three components. The goodness of fit for the selected models is checked using the graphical plots including the probability density function and cumulative distribution function. This article also contributes via the spatial determination of return level or rainfall amounts at risk with different return periods using the prediction intervals constructed from the posterior predictive distribution.
用于分析降雨模式的空间混合建模:以爱尔兰为例
摘要本研究调查了2018年1月至2020年12月爱尔兰各站点报告的最大月降雨量的空间异质性。异质性采用不同秩的贝叶斯正态混合模型进行建模。最佳模型或异质性程度的选择使用四个标准来实现,这四个标准是修改的Akaike信息标准、修改的贝叶斯信息标准、偏差信息标准和广泛适用的信息标准。估计和模型选择过程是使用吉布斯采样来实现的。结果表明,最大月降雨量由两部分和三部分组成。使用包括概率密度函数和累积分布函数的图形图来检查所选模型的拟合优度。本文还通过使用由后验预测分布构建的预测区间,在空间上确定不同重现期的重现水平或风险降雨量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Engineering
Open Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
3.90
自引率
0.00%
发文量
52
审稿时长
30 weeks
期刊介绍: Open Engineering publishes research results of wide interest in emerging interdisciplinary and traditional engineering fields, including: electrical and computer engineering, civil and environmental engineering, mechanical and aerospace engineering, material science and engineering. The journal is designed to facilitate the exchange of innovative and interdisciplinary ideas between researchers from different countries. Open Engineering is a peer-reviewed, English language journal. Researchers from non-English speaking regions are provided with free language correction by scientists who are native speakers. Additionally, each published article is widely promoted to researchers working in the same field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信