{"title":"On the Investigation of Frequency-Related Fingerprints of Meminductor/Capacitor and Their Duals Realized by Circuit Emulators","authors":"K. Bhardwaj, M. Srivastava","doi":"10.13164/re.2022.0374","DOIUrl":null,"url":null,"abstract":". This article investigates the frequency-related fingerprints of the meminductor/capacitors and their duals realized by the circuit emulators. The direct dependency of the hysteresis loop area on the inverse of operating frequency is an important property of the memristor confirm-ing its resistive memory nature. This work shows that not all such elements (which exhibit hysteresis characteristics) seem to follow this fingerprint on subjected to the sinusoidal current/voltage excitation signal when they are realized by the emulator circuits. It is found that in some cases PHL (Pinched Hysteresis Loop) characteristics of the mem-capacitor/inductor and their elements, may seem to create a fallacy in their appearance. Although this behavior is natural (but distinct from the memristor), it does produce some challenges during the measurements of these memelements and non-memelements. The behavior has been demonstrated in the MATLAB generated plots and also verified in the experimental and simulation results obtained for the designed emulators for the memcapaci-tor/meminductor and their duals. The paper also attempts to propose potential solutions to avoid this delusion per-ceived in the PHL characteristics of memcapacitor/memin-ductor and their duals, due to conventional measuring methods.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.13164/re.2022.0374","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
. This article investigates the frequency-related fingerprints of the meminductor/capacitors and their duals realized by the circuit emulators. The direct dependency of the hysteresis loop area on the inverse of operating frequency is an important property of the memristor confirm-ing its resistive memory nature. This work shows that not all such elements (which exhibit hysteresis characteristics) seem to follow this fingerprint on subjected to the sinusoidal current/voltage excitation signal when they are realized by the emulator circuits. It is found that in some cases PHL (Pinched Hysteresis Loop) characteristics of the mem-capacitor/inductor and their elements, may seem to create a fallacy in their appearance. Although this behavior is natural (but distinct from the memristor), it does produce some challenges during the measurements of these memelements and non-memelements. The behavior has been demonstrated in the MATLAB generated plots and also verified in the experimental and simulation results obtained for the designed emulators for the memcapaci-tor/meminductor and their duals. The paper also attempts to propose potential solutions to avoid this delusion per-ceived in the PHL characteristics of memcapacitor/memin-ductor and their duals, due to conventional measuring methods.
期刊介绍:
Since 1992, the Radioengineering Journal has been publishing original scientific and engineering papers from the area of wireless communication and application of wireless technologies. The submitted papers are expected to deal with electromagnetics (antennas, propagation, microwaves), signals, circuits, optics and related fields.
Each issue of the Radioengineering Journal is started by a feature article. Feature articles are organized by members of the Editorial Board to present the latest development in the selected areas of radio engineering.
The Radioengineering Journal makes a maximum effort to publish submitted papers as quickly as possible. The first round of reviews should be completed within two months. Then, authors are expected to improve their manuscript within one month. If substantial changes are recommended and further reviews are requested by the reviewers, the publication time is prolonged.