Hypoxia Decreases Thermal Sensitivity and Increases Thermal Breadth of Locomotion in the Invasive Freshwater Snail Potamopyrgus antipodarum

IF 1.8 3区 生物学 Q3 PHYSIOLOGY
E. E. King, C. Williams, J. Stillman
{"title":"Hypoxia Decreases Thermal Sensitivity and Increases Thermal Breadth of Locomotion in the Invasive Freshwater Snail Potamopyrgus antipodarum","authors":"E. E. King, C. Williams, J. Stillman","doi":"10.1086/719899","DOIUrl":null,"url":null,"abstract":"Understanding the physiology of invasive species will contribute to better prediction and prevention measures to avoid the economic and environmental consequences of biological invasions. Predicting the future range of Potamopyrgus antipodarum, a globally invasive aquatic snail, relies on a comprehensive understanding of its physiological tolerances to individual and combined environmental stressors. We conducted a laboratory study to investigate the interacting effects of temperature and dissolved oxygen in shaping the abiotic niche of P. antipodarum. We generated thermal performance curves (7°C–35°C) for resting respiration rate and voluntary locomotor behaviors under normoxia and hypoxia to find the conditions that limited each performance. Extreme high (>30°C) and low (<12°C) temperatures limited respiration and activity, but respiration rate was most oxygen sensitive at low temperatures. Under hypoxic conditions, activity was less thermally sensitive. Increased activity under high temperatures (22°C–28°C) may be fueled by anaerobic metabolism. Relying on anaerobic energy is a time-limited survival strategy, so further warming and deoxygenation of freshwater systems may limit the spread of this very tolerant invasive species.","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":"95 1","pages":"251 - 264"},"PeriodicalIF":1.8000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological and Biochemical Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/719899","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Understanding the physiology of invasive species will contribute to better prediction and prevention measures to avoid the economic and environmental consequences of biological invasions. Predicting the future range of Potamopyrgus antipodarum, a globally invasive aquatic snail, relies on a comprehensive understanding of its physiological tolerances to individual and combined environmental stressors. We conducted a laboratory study to investigate the interacting effects of temperature and dissolved oxygen in shaping the abiotic niche of P. antipodarum. We generated thermal performance curves (7°C–35°C) for resting respiration rate and voluntary locomotor behaviors under normoxia and hypoxia to find the conditions that limited each performance. Extreme high (>30°C) and low (<12°C) temperatures limited respiration and activity, but respiration rate was most oxygen sensitive at low temperatures. Under hypoxic conditions, activity was less thermally sensitive. Increased activity under high temperatures (22°C–28°C) may be fueled by anaerobic metabolism. Relying on anaerobic energy is a time-limited survival strategy, so further warming and deoxygenation of freshwater systems may limit the spread of this very tolerant invasive species.
低氧降低入侵淡水蜗牛的热敏性和增加运动的热宽度
了解入侵物种的生理学将有助于更好地预测和预防措施,以避免生物入侵的经济和环境后果。预测全球入侵水生蜗牛Potamopyrgus antipodarum的未来范围,取决于对其对个体和组合环境压力的生理耐受性的全面了解。我们进行了一项实验室研究,以研究温度和溶解氧在形成P.antipodarum非生物生态位中的相互作用。我们生成了常氧和缺氧条件下静息呼吸速率和自主运动行为的热性能曲线(7°C–35°C),以找出限制每种性能的条件。极端高温(>30°C)和低温(<12°C)限制了呼吸和活动,但呼吸速率在低温下对氧气最敏感。在缺氧条件下,活动对热的敏感性较低。高温(22°C–28°C)下活性的增加可能是由厌氧代谢推动的。依靠厌氧能源是一种有时限的生存策略,因此淡水系统的进一步变暖和脱氧可能会限制这种非常耐受的入侵物种的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
6.20%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches primarily publishes original research in animal physiology and biochemistry as considered from behavioral, ecological, and/or evolutionary perspectives. Studies at all levels of biological organization from the molecular to the whole organism are welcome, and work that integrates across levels of organization is particularly encouraged. Studies that focus on behavior or morphology are welcome, so long as they include ties to physiology or biochemistry, in addition to having an ecological or evolutionary context. Subdisciplines of interest include nutrition and digestion, salt and water balance, epithelial and membrane transport, gas exchange and transport, acid-base balance, temperature adaptation, energetics, structure and function of macromolecules, chemical coordination and signal transduction, nitrogen metabolism and excretion, locomotion and muscle function, biomechanics, circulation, behavioral, comparative and mechanistic endocrinology, sensory physiology, neural coordination, and ecotoxicology ecoimmunology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信