{"title":"Information-Theoretic Interpretation of Quantum Formalism","authors":"Michel Feldmann","doi":"10.1007/s10701-023-00690-1","DOIUrl":null,"url":null,"abstract":"<div><p>We present an information-theoretic interpretation of quantum formalism based on a Bayesian framework and devoid of any extra axiom or principle. Quantum information is construed as a technique for analyzing a logical system subject to classical constraints, based on a question-and-answer procedure. The problem is posed from a particular batch of queries while the constraints are represented by the truth table of a set of Boolean functions. The Bayesian inference technique consists in assigning a probability distribution within a real-valued probability space to the joint set of queries in order to satisfy the constraints. The initial query batch is not unique and alternative batches can be considered at will. They are enabled mechanically from the initial batch, quite simply by transcribing the probability space into an auxiliary Hilbert space. It turns out that this sole procedure leads to exactly rediscover the standard quantum information theory and thus provides an information-theoretic rationale to its technical rules. In this framework, the great challenges of quantum mechanics become simple platitudes: Why is the theory probabilistic? Why is the theory linear? Where does the Hilbert space come from? In addition, most of the paradoxes, such as uncertainty principle, entanglement, contextuality, nonsignaling correlation, measurement problem, etc., become straightforward features. In the end, our major conclusion is that quantum information is nothing but classical information processed by a mature form of Bayesian inference technique and, as such, consubstantial with Aristotelian logic.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-023-00690-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
We present an information-theoretic interpretation of quantum formalism based on a Bayesian framework and devoid of any extra axiom or principle. Quantum information is construed as a technique for analyzing a logical system subject to classical constraints, based on a question-and-answer procedure. The problem is posed from a particular batch of queries while the constraints are represented by the truth table of a set of Boolean functions. The Bayesian inference technique consists in assigning a probability distribution within a real-valued probability space to the joint set of queries in order to satisfy the constraints. The initial query batch is not unique and alternative batches can be considered at will. They are enabled mechanically from the initial batch, quite simply by transcribing the probability space into an auxiliary Hilbert space. It turns out that this sole procedure leads to exactly rediscover the standard quantum information theory and thus provides an information-theoretic rationale to its technical rules. In this framework, the great challenges of quantum mechanics become simple platitudes: Why is the theory probabilistic? Why is the theory linear? Where does the Hilbert space come from? In addition, most of the paradoxes, such as uncertainty principle, entanglement, contextuality, nonsignaling correlation, measurement problem, etc., become straightforward features. In the end, our major conclusion is that quantum information is nothing but classical information processed by a mature form of Bayesian inference technique and, as such, consubstantial with Aristotelian logic.
期刊介绍:
The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others.
Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments.
Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises.
The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.