On the signless Laplacian and normalized signless Laplacian spreads of graphs

IF 0.4 4区 数学 Q4 MATHEMATICS
E. Milovanovic, Ş. B. Bozkurt Altindağ, M. Matejic, I. Milovanovic
{"title":"On the signless Laplacian and normalized signless Laplacian spreads of graphs","authors":"E. Milovanovic, Ş. B. Bozkurt Altindağ, M. Matejic, I. Milovanovic","doi":"10.21136/CMJ.2023.0005-22","DOIUrl":null,"url":null,"abstract":"Let G = (V, E), V = {v1, v2, …, vn}, be a simple connected graph with n vertices, m edges and a sequence of vertex degrees d1 ≽ d2 ≽ … ≽ dn. Denote by A and D the adjacency matrix and diagonal vertex degree matrix of G, respectively. The signless Laplacian of G is defined as L+ = D + A and the normalized signless Laplacian matrix as r(G)=γ2+/γn+\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$r\\left( G \\right) = \\gamma _2^ + /\\gamma _n^ + $$\\end{document}. The normalized signless Laplacian spreads of a connected nonbipartite graph G are defined as l(G)=γ2+−γn+\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$l\\left( G \\right) = \\gamma _2^ + - \\gamma _n^ + $$\\end{document}, where γ1+⩾γ2+⩾...⩾γn+⩾0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\gamma _1^ + \\geqslant \\gamma _2^ + \\geqslant \\ldots \\geqslant \\gamma _n^ + \\geqslant 0$$\\end{document} are eigenvalues of ℒ+\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{\\cal L}^ + }$$\\end{document}. We establish sharp lower and upper bounds for the normalized signless Laplacian spreads of connected graphs. In addition, we present a better lower bound on the signless Laplacian spread.","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":"73 1","pages":"499 - 511"},"PeriodicalIF":0.4000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czechoslovak Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/CMJ.2023.0005-22","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G = (V, E), V = {v1, v2, …, vn}, be a simple connected graph with n vertices, m edges and a sequence of vertex degrees d1 ≽ d2 ≽ … ≽ dn. Denote by A and D the adjacency matrix and diagonal vertex degree matrix of G, respectively. The signless Laplacian of G is defined as L+ = D + A and the normalized signless Laplacian matrix as r(G)=γ2+/γn+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\left( G \right) = \gamma _2^ + /\gamma _n^ + $$\end{document}. The normalized signless Laplacian spreads of a connected nonbipartite graph G are defined as l(G)=γ2+−γn+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l\left( G \right) = \gamma _2^ + - \gamma _n^ + $$\end{document}, where γ1+⩾γ2+⩾...⩾γn+⩾0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _1^ + \geqslant \gamma _2^ + \geqslant \ldots \geqslant \gamma _n^ + \geqslant 0$$\end{document} are eigenvalues of ℒ+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal L}^ + }$$\end{document}. We establish sharp lower and upper bounds for the normalized signless Laplacian spreads of connected graphs. In addition, we present a better lower bound on the signless Laplacian spread.
图的无符号拉普拉斯扩展和归一化无符号拉普拉斯扩展
设G=(V,E),V={v1,v2,…,vn}是一个具有n个顶点、m条边和一系列顶点度d1≽d2 \8829…\8829;dn的简单连通图。用A和D分别表示G的邻接矩阵和对角顶点度矩阵。G的无符号拉普拉斯算子定义为L+=D+A,归一化无符号拉普拉斯矩阵定义为r(G)=γ2+/γn+\documentclass[12pt]{minimal}\usepackage{amsmath}\use package{wasysym}\ usepackage{amsfonts}\usapackage{amssymb}\userpackage{amsbsy}\usepackage{mathrsfs}\ use package{upgek}\setlength{\doddsedmargin}{-69pt}\begin{document}$r\left(G\right)=\gamma _2^+/\gamma _n^+$$\结束{文档}。连通的非二分图G的归一化无符号拉普拉斯展开定义为l(G)=γ2+γn+\documentclass[12pt]{minimal}\usepackage{amsmath}\use package{wasysym}\ usepackage{amsfonts}\ use package{amssymb}\ usapackage{amsbsy}\usepackage{mathrsfs}\usapackage{upgeek}\setlength{\oddsidemargin}{-69pt}\boot{document}$l\left(G\right)=\gamma _2^+-\gamma _n^+$\end{document},其中γ1+γ2+γn+⩾0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\ usepackage{amsfonts}\usecpackage{amssymb}\ucepackage{hamsbsy}\usepackage{mathrsfs}\userpackage{upgeeek}\setlength{\doddsidemargin}{-69pt}\ begin{document}$\gamma _1^+\geqslant\gamma _2^+\ geqslant\ldots\geqslant\ gamma _n^+\getqslant 0$\end{ℒ+\documentclass[12pt]{minimal}\ usepackage{amsmath}\ use package{{wasysym}\usepackage{amsfonts}\ usepackage{amssymb}\ userpackage{amsbsy}\usepackage{mathrsfs}\ user package{upgek}\setlength{\doddsedmargin}{-69pt}\ begin{document}$${\cal L}^+}$\end{document}。我们为连通图的归一化无符号拉普拉斯展开建立了清晰的下界和上界。此外,我们给出了无符号拉普拉斯展开的一个更好的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Czechoslovak Mathematical Journal publishes original research papers of high scientific quality in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信