Miles Markey, Caroline D. Pena, T. Venkatesh, L. Cai, Maribel Vazquez
{"title":"Retinal Progenitor Cells Exhibit Cadherin-Dependent Chemotaxis across Transplantable Extracellular Matrix of In Vitro Developmental and Adult Models","authors":"Miles Markey, Caroline D. Pena, T. Venkatesh, L. Cai, Maribel Vazquez","doi":"10.1155/2023/1381620","DOIUrl":null,"url":null,"abstract":"Retinal degeneration is an escalating public health challenge, as diseases such as age-related macular degeneration, diabetic retinopathy, and retinitis pigmentosa cause irreversible vision loss in millions of adults each year. Regenerative medicine has pioneered the development of stem cell replacement therapies, which treat degeneration by replacing damaged retinal neurons with transplanted stem-like cells (SCs). While the collective migration of SCs plays critical roles during retinal development, our understanding of collective SC behaviors within biomaterials transplanted into adult tissue remains understudied. This project examines the potential therapeutic impacts of collective SC migration during transplantation by correlating the expression of cadherin, cell-cell cohesion molecules that maintain intercellular communication during development, with receptor proteins of chemoattractant molecules prevalent in degenerated adult tissue. Experiments examine these well-conserved biomechanisms by using two different model organisms: Drosophila melanogaster, a seminal model for retinal development, and Mus, an important preclinical model for transplantation. Results indicate that SCs from both animal models significantly upregulate cadherin expression to achieve more directed collective migration towards species-specific chemoattractants and exhibit longer distance motility upon different extracellular matrix substrates.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/1381620","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Retinal degeneration is an escalating public health challenge, as diseases such as age-related macular degeneration, diabetic retinopathy, and retinitis pigmentosa cause irreversible vision loss in millions of adults each year. Regenerative medicine has pioneered the development of stem cell replacement therapies, which treat degeneration by replacing damaged retinal neurons with transplanted stem-like cells (SCs). While the collective migration of SCs plays critical roles during retinal development, our understanding of collective SC behaviors within biomaterials transplanted into adult tissue remains understudied. This project examines the potential therapeutic impacts of collective SC migration during transplantation by correlating the expression of cadherin, cell-cell cohesion molecules that maintain intercellular communication during development, with receptor proteins of chemoattractant molecules prevalent in degenerated adult tissue. Experiments examine these well-conserved biomechanisms by using two different model organisms: Drosophila melanogaster, a seminal model for retinal development, and Mus, an important preclinical model for transplantation. Results indicate that SCs from both animal models significantly upregulate cadherin expression to achieve more directed collective migration towards species-specific chemoattractants and exhibit longer distance motility upon different extracellular matrix substrates.
期刊介绍:
Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs.
The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.