Electrical Networks, Lagrangian Grassmannians, and Symplectic Groups

B. Bychkov, V. Gorbounov, A. Kazakov, D. Talalaev
{"title":"Electrical Networks, Lagrangian Grassmannians, and Symplectic Groups","authors":"B. Bychkov, V. Gorbounov, A. Kazakov, D. Talalaev","doi":"10.17323/1609-4514-2023-23-2-133-167","DOIUrl":null,"url":null,"abstract":"We refine the result of T. Lam \\cite{L} on embedding the space $E_n$ of electrical networks on a planar graph with $n$ boundary points into the totally non-negative Grassmannian $\\mathrm{Gr}_{\\geq 0}(n-1,2n)$ by proving first that the image lands in $\\mathrm{Gr}(n-1,V)\\subset \\mathrm{Gr}(n-1,2n)$ where $V\\subset \\mathbb{R}^{2n}$ is a certain subspace of dimension $2n-2$. The role of this reduction in the dimension of the ambient space is crucial for us. We show next that the image lands in fact inside the Lagrangian Grassmannian $\\mathrm{LG}(n-1,V)\\subset \\mathrm{Gr}(n-1,V)$. As it is well known $\\mathrm{LG}(n-1)$ can be identified with $\\mathrm{Gr}(n-1,2n-2)\\cap \\mathbb{P} L$ where $L\\subset \\bigwedge^{n-1}\\mathbb R^{2n-2}$ is a subspace of dimension equal to the Catalan number $C_n$, moreover it is the space of the fundamental representation of the symplectic group $Sp(2n-2)$ which corresponds to the last vertex of the Dynkin diagram. We show further that the linear relations cutting the image of $E_n$ out of $\\mathrm{Gr}(n-1,2n)$ found in \\cite{L} define that space $L$. This connects the combinatorial description of $E_n$ discovered in \\cite{L} and representation theory of the symplectic group.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17323/1609-4514-2023-23-2-133-167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We refine the result of T. Lam \cite{L} on embedding the space $E_n$ of electrical networks on a planar graph with $n$ boundary points into the totally non-negative Grassmannian $\mathrm{Gr}_{\geq 0}(n-1,2n)$ by proving first that the image lands in $\mathrm{Gr}(n-1,V)\subset \mathrm{Gr}(n-1,2n)$ where $V\subset \mathbb{R}^{2n}$ is a certain subspace of dimension $2n-2$. The role of this reduction in the dimension of the ambient space is crucial for us. We show next that the image lands in fact inside the Lagrangian Grassmannian $\mathrm{LG}(n-1,V)\subset \mathrm{Gr}(n-1,V)$. As it is well known $\mathrm{LG}(n-1)$ can be identified with $\mathrm{Gr}(n-1,2n-2)\cap \mathbb{P} L$ where $L\subset \bigwedge^{n-1}\mathbb R^{2n-2}$ is a subspace of dimension equal to the Catalan number $C_n$, moreover it is the space of the fundamental representation of the symplectic group $Sp(2n-2)$ which corresponds to the last vertex of the Dynkin diagram. We show further that the linear relations cutting the image of $E_n$ out of $\mathrm{Gr}(n-1,2n)$ found in \cite{L} define that space $L$. This connects the combinatorial description of $E_n$ discovered in \cite{L} and representation theory of the symplectic group.
分享
查看原文
电网络,拉格朗日格拉斯曼和辛群
我们改进了T.Lam\cite{L}关于将具有$n$边界点的平面图上的网络空间$E_n$嵌入到完全非负Grassmannian$\mathrm中的结果{Gr}_{\geq 0}(n-1,2n)$,首先证明图像落在$\mathrm{Gr}(n-1,V)\subet \mathrm}(n,2n)$中,其中$V\subet \athbb{R}^{2n}$是维数为$2n-2$的某个子空间。这种降低环境空间维度的作用对我们来说至关重要。接下来,我们展示了图像实际上落在拉格朗日Grassmannian$\mathrm{LG}(n-1,V)\subet \mathrm{Gr}(n-1,V)$内。众所周知,$\mathrm{LG}(n-1)$可以用$\mathrm{Gr}(n-1,2n-2)\cap\mathbb{P}L$来识别,其中$L\subet\bigwedge^{n-1}\mathbb R^{2n-2}$是一个维数等于加泰罗尼亚语数$C_n$的子空间,而且它是辛群$Sp(2n-2)$的基本表示的空间,它对应于Dynkin图的最后一个顶点。我们进一步证明了从\cite{L}中找到的$\mathrm{Gr}(n-1,2n)$中截取$E_n$的图像的线性关系定义了$L$空间。这将在{L}中发现的$E_n$的组合描述与辛群的表示理论联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信