W. Setzer, M. Ivory, O. Slobodyan, J. W. Van Der Wall, L. Parazzoli, D. Stick, M. Gehl, M. Blain, R. Kay, H. McGuinness
{"title":"Fluorescence detection of a trapped ion with a monolithically integrated single-photon-counting avalanche diode","authors":"W. Setzer, M. Ivory, O. Slobodyan, J. W. Van Der Wall, L. Parazzoli, D. Stick, M. Gehl, M. Blain, R. Kay, H. McGuinness","doi":"10.1063/5.0055999","DOIUrl":null,"url":null,"abstract":"We report on the demonstration of fluorescence detection from a trapped ion using single-photon avalanche photodiodes (SPADs) monolithically integrated with a microfabricated surface ion trap. The SPADs are located below the trapping positions of the ions and designed to detect 370 nm photons emitted from single 174Yb+ and 171Yb+ ions. We achieve an ion/no-ion detection fidelity for 174Yb+ of 0.99 with an average detection window of 7.7(1) ms. We report a dark count rate as low as 1.2 kcps for room temperature operation. The fidelity is limited by laser scatter, dark counts, and heating that prevents holding the ion directly above the SPAD. We measure count rates from each of the contributing sources and fluorescence as a function of ion position. We use the ion as a calibrated light source along with measurements of the active detector area to estimate a SPAD quantum efficiency of 24±1%.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0055999","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 17
Abstract
We report on the demonstration of fluorescence detection from a trapped ion using single-photon avalanche photodiodes (SPADs) monolithically integrated with a microfabricated surface ion trap. The SPADs are located below the trapping positions of the ions and designed to detect 370 nm photons emitted from single 174Yb+ and 171Yb+ ions. We achieve an ion/no-ion detection fidelity for 174Yb+ of 0.99 with an average detection window of 7.7(1) ms. We report a dark count rate as low as 1.2 kcps for room temperature operation. The fidelity is limited by laser scatter, dark counts, and heating that prevents holding the ion directly above the SPAD. We measure count rates from each of the contributing sources and fluorescence as a function of ion position. We use the ion as a calibrated light source along with measurements of the active detector area to estimate a SPAD quantum efficiency of 24±1%.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.