{"title":"Recent progress of nanomaterials for colorimetric and fluorescence sensing of reactive oxygen species in biological and environmental samples","authors":"Suresh Kumar Kailasa , Ghinaiya Nirav Vajubhai , Janardhan Reddy Koduru , Tae Jung Park","doi":"10.1016/j.teac.2023.e00196","DOIUrl":null,"url":null,"abstract":"<div><p><span>Incomplete reduction of oxygen produces reactive oxygen species (ROS) or intermediates. Hydrogen peroxide (H</span><sub>2</sub>O<sub>2</sub>), superoxide (O<sub>2</sub><sup>•−</sup><span>), hydroxyl radical (</span><sup>•</sup>OH), and hypochlorite (ClO<sup>-</sup><span>) are examples of ROS. Peroxynitrite (ONOO</span><sup>−</sup><span><span><span><span>) belongs to reactive nitrogen species. Recent studies are evidenced that they play crucial roles in cell signaling and tissue homeostasis. Further, ROS are recognized as oxidizing </span>chemical species for various biochemical pathways (oxidative stress and damage of organisms) and as scavengers for various environmental applications. Herein, the recent progress of </span>nanomaterials as </span>optical sensors for colorimetric and fluorescence sensing of reactive oxygen species is discussed. This review also provides the analytical features of nanomaterials-based colorimetric and fluorescent sensors for sensing of ROS in real samples (biological and environmental samples). Additionally, the future prospects of nanomaterials-based colorimetric and fluorescent sensors for the detection of ROS are discussed.</span></p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"37 ","pages":"Article e00196"},"PeriodicalIF":11.1000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Environmental Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214158823000028","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 10
Abstract
Incomplete reduction of oxygen produces reactive oxygen species (ROS) or intermediates. Hydrogen peroxide (H2O2), superoxide (O2•−), hydroxyl radical (•OH), and hypochlorite (ClO-) are examples of ROS. Peroxynitrite (ONOO−) belongs to reactive nitrogen species. Recent studies are evidenced that they play crucial roles in cell signaling and tissue homeostasis. Further, ROS are recognized as oxidizing chemical species for various biochemical pathways (oxidative stress and damage of organisms) and as scavengers for various environmental applications. Herein, the recent progress of nanomaterials as optical sensors for colorimetric and fluorescence sensing of reactive oxygen species is discussed. This review also provides the analytical features of nanomaterials-based colorimetric and fluorescent sensors for sensing of ROS in real samples (biological and environmental samples). Additionally, the future prospects of nanomaterials-based colorimetric and fluorescent sensors for the detection of ROS are discussed.
期刊介绍:
Trends in Environmental Analytical Chemistry is an authoritative journal that focuses on the dynamic field of environmental analytical chemistry. It aims to deliver concise yet insightful overviews of the latest advancements in this field. By acquiring high-quality chemical data and effectively interpreting it, we can deepen our understanding of the environment. TrEAC is committed to keeping up with the fast-paced nature of environmental analytical chemistry by providing timely coverage of innovative analytical methods used in studying environmentally relevant substances and addressing related issues.