Multi-modified epoxy insulation with improved flashover threshold for HVDC applications

IF 3.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Inzamam Ul Haq, Feipeng Wang
{"title":"Multi-modified epoxy insulation with improved flashover threshold for HVDC applications","authors":"Inzamam Ul Haq,&nbsp;Feipeng Wang","doi":"10.1049/nde2.12058","DOIUrl":null,"url":null,"abstract":"<p>The flashover threshold (<i>V</i><sub><i>flsh</i></sub>) of polymer insulations such as epoxy (EP) in HVDC systems can be augmented by modifying their surface with an appropriate treatment technology. For such purpose, several surface treatment methods such as ion beam, sandpaper and a combination of the two is introduced. Firstly, insulation samples with pure epoxy (<i>EP</i><sub><i>pure</i></sub>), different ion beam treatment periods (<i>EP</i><sub><i>ion</i></sub>;10, 15, 20 min) and different roughness (<i>EP</i><sub><i>sand</i></sub>; <i>R</i>1 = 4.23 μm, <i>R</i>2 = 6.34 μm, <i>R</i>3 = 9.21 μm) are prepared on the laboratory scale. Afterward, based on several characterisations, such as surface conductivity, mean surface roughness and potential distribution of these insulations, multi-modified insulation (<i>EP</i><sub><i>multi</i></sub> = <i>EP</i><sub><i>ion-20</i></sub> + <i>EP</i><sub><i>sand-R3</i></sub>) is prepared. In the end, the <i>V</i><sub><i>flsh</i></sub> of each insulation group is measured and compared to examine the effectiveness of the proposed modifications. It is obtained that the <i>V</i><sub><i>flsh</i></sub> of the modified insulations augmented dramatically irrespective of the treatment method. The <i>V</i><sub><i>flsh</i></sub> of the insulation group <i>EP</i><sub><i>multi</i></sub> augmented by 52.66 % which is the highest improvement among all insulation groups. In short, the proposed surface modifications are effective and could be used as references to enhance the insulation strength of polymer dielectrics in HVDC systems.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"6 4","pages":"267-275"},"PeriodicalIF":3.8000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12058","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Nanodielectrics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The flashover threshold (Vflsh) of polymer insulations such as epoxy (EP) in HVDC systems can be augmented by modifying their surface with an appropriate treatment technology. For such purpose, several surface treatment methods such as ion beam, sandpaper and a combination of the two is introduced. Firstly, insulation samples with pure epoxy (EPpure), different ion beam treatment periods (EPion;10, 15, 20 min) and different roughness (EPsand; R1 = 4.23 μm, R2 = 6.34 μm, R3 = 9.21 μm) are prepared on the laboratory scale. Afterward, based on several characterisations, such as surface conductivity, mean surface roughness and potential distribution of these insulations, multi-modified insulation (EPmulti = EPion-20 + EPsand-R3) is prepared. In the end, the Vflsh of each insulation group is measured and compared to examine the effectiveness of the proposed modifications. It is obtained that the Vflsh of the modified insulations augmented dramatically irrespective of the treatment method. The Vflsh of the insulation group EPmulti augmented by 52.66 % which is the highest improvement among all insulation groups. In short, the proposed surface modifications are effective and could be used as references to enhance the insulation strength of polymer dielectrics in HVDC systems.

Abstract Image

多改性环氧绝缘与改进的HVDC应用的闪络阈值
高压直流系统中环氧树脂(EP)等聚合物绝缘体的闪络阈值(Vflsh)可以通过适当的处理技术修饰其表面来提高。为此,介绍了离子束、砂纸及两者结合的几种表面处理方法。首先,采用纯环氧树脂(EPpure)、不同离子束处理时间(EPion;10、15、20 min)和不同粗糙度(EPsand;R1 = 4.23 μm, R2 = 6.34 μm, R3 = 9.21 μm)在实验室尺度上制备。然后,根据这些绝缘体的表面电导率、平均表面粗糙度和电位分布等几个特征,制备了多重改性绝缘体(EPmulti = epon -20 + EPsand-R3)。最后,测量和比较每个绝缘组的Vflsh,以检查所提出的修改的有效性。结果表明,无论采用何种处理方法,改性后的绝缘材料的Vflsh均显著增大。保温组EPmulti的Vflsh提高了52.66%,是所有保温组中提高幅度最大的。总之,所提出的表面改性是有效的,可以为提高高压直流系统中聚合物介电体的绝缘强度提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Nanodielectrics
IET Nanodielectrics Materials Science-Materials Chemistry
CiteScore
5.60
自引率
3.70%
发文量
7
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信