{"title":"Using seed respiration as a tool for calculating optimal soaking times for ‘on-farm’ seed priming of barley (Hordeum vulgare)","authors":"Javier Carrillo-Reche, A. Newton, R. Quilliam","doi":"10.1017/S0960258521000039","DOIUrl":null,"url":null,"abstract":"Abstract A low-cost technique named ‘on-farm’ seed priming is increasingly being recognized as an effective approach to maximize crop establishment. It consists of anaerobically soaking seeds in water before sowing resulting in rapid and uniform germination, and enhanced seedling vigour. The extent of these benefits depends on the soaking time. The current determination of optimal soaking time by germination assays and mini-plot trials is resource-intensive, as it is species/genotype-specific. This study aimed to determine the potential of the seed respiration rate (an indicator of metabolic activity) and seed morphological changes during barley priming as predictors of the priming benefits and, thus, facilitate the determination of optimal soaking times. A series of germination tests revealed that the germination rate is mostly attributable to the rapid hydration of embryo tissues, as the highest gains in the germination rate occurred before the resumption of respiration. Germination uniformity, however, was not significantly improved until seeds were primed for at least 8 h, that is, after a first respiration burst was initiated. The maximum seedling vigour was attained when the priming was stopped just before the beginning of the differentiation of embryonic axes (20 h) after which vigour began to decrease (‘over-priming’). The onset of embryonic axis elongation was preceded by a second respiration burst, which can be used as a marker for priming optimization. Thus, monitoring of seed respiration provides a rapid and inexpensive alternative to the current practice. The method could be carried out by agricultural institutions to provide recommended optimal soaking times for the common barley varieties within a specific region.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0960258521000039","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S0960258521000039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract A low-cost technique named ‘on-farm’ seed priming is increasingly being recognized as an effective approach to maximize crop establishment. It consists of anaerobically soaking seeds in water before sowing resulting in rapid and uniform germination, and enhanced seedling vigour. The extent of these benefits depends on the soaking time. The current determination of optimal soaking time by germination assays and mini-plot trials is resource-intensive, as it is species/genotype-specific. This study aimed to determine the potential of the seed respiration rate (an indicator of metabolic activity) and seed morphological changes during barley priming as predictors of the priming benefits and, thus, facilitate the determination of optimal soaking times. A series of germination tests revealed that the germination rate is mostly attributable to the rapid hydration of embryo tissues, as the highest gains in the germination rate occurred before the resumption of respiration. Germination uniformity, however, was not significantly improved until seeds were primed for at least 8 h, that is, after a first respiration burst was initiated. The maximum seedling vigour was attained when the priming was stopped just before the beginning of the differentiation of embryonic axes (20 h) after which vigour began to decrease (‘over-priming’). The onset of embryonic axis elongation was preceded by a second respiration burst, which can be used as a marker for priming optimization. Thus, monitoring of seed respiration provides a rapid and inexpensive alternative to the current practice. The method could be carried out by agricultural institutions to provide recommended optimal soaking times for the common barley varieties within a specific region.