Localizing virtual cycles for Donaldson-Thomas invariants of Calabi-Yau 4-folds

IF 0.9 1区 数学 Q2 MATHEMATICS
Y. Kiem, Hyeonjun Park
{"title":"Localizing virtual cycles for Donaldson-Thomas invariants of Calabi-Yau 4-folds","authors":"Y. Kiem, Hyeonjun Park","doi":"10.1090/jag/816","DOIUrl":null,"url":null,"abstract":"<p>In 2020, Oh and Thomas constructed a virtual cycle <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket upper X right-bracket Superscript normal v normal i normal r Baseline element-of upper A Subscript asterisk Baseline left-parenthesis upper X right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:msup>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n <mml:mi mathvariant=\"normal\">i</mml:mi>\n <mml:mi mathvariant=\"normal\">r</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msup>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[X]^{\\mathrm {vir}} \\in A_*(X)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for a quasi-projective moduli space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of stable sheaves or complexes over a Calabi-Yau 4-fold against which DT4 invariants may be defined as integrals of cohomology classes. In this paper, we prove that the virtual cycle localizes to the zero locus <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X left-parenthesis sigma right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">X(\\sigma )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of an isotropic cosection <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma\">\n <mml:semantics>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\sigma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of the obstruction sheaf <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O b Subscript upper X\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:msub>\n <mml:mi>b</mml:mi>\n <mml:mi>X</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Ob_X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and construct a localized virtual cycle <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket upper X right-bracket Subscript normal l normal o normal c Superscript normal v normal i normal r Baseline element-of upper A Subscript asterisk Baseline left-parenthesis upper X left-parenthesis sigma right-parenthesis right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:msubsup>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">l</mml:mi>\n <mml:mi mathvariant=\"normal\">o</mml:mi>\n <mml:mi mathvariant=\"normal\">c</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n <mml:mi mathvariant=\"normal\">i</mml:mi>\n <mml:mi mathvariant=\"normal\">r</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msubsup>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[X]^{\\mathrm {vir}} _\\mathrm {loc}\\in A_*(X(\\sigma ))</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This is achieved by further localizing the Oh-Thomas class which localizes Edidin-Graham’s square root Euler class of a special orthogonal bundle. When the cosection <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma\">\n <mml:semantics>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\sigma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is surjective so that the virtual cycle vanishes, we construct a reduced virtual cycle <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket upper X right-bracket Subscript normal r normal e normal d Superscript normal v normal i normal r\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:msubsup>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">r</mml:mi>\n <mml:mi mathvariant=\"normal\">e</mml:mi>\n <mml:mi mathvariant=\"normal\">d</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n <mml:mi mathvariant=\"normal\">i</mml:mi>\n <mml:mi mathvariant=\"normal\">r</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msubsup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[X]^{\\mathrm {vir}} _{\\mathrm {red}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. As an application, we prove DT4 vanishing results for hyperkähler 4-folds. All these results hold for virtual structure sheaves and K-theoretic DT4 invariants.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/816","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

In 2020, Oh and Thomas constructed a virtual cycle [ X ] v i r A ( X ) [X]^{\mathrm {vir}} \in A_*(X) for a quasi-projective moduli space X X of stable sheaves or complexes over a Calabi-Yau 4-fold against which DT4 invariants may be defined as integrals of cohomology classes. In this paper, we prove that the virtual cycle localizes to the zero locus X ( σ ) X(\sigma ) of an isotropic cosection σ \sigma of the obstruction sheaf O b X Ob_X of X X and construct a localized virtual cycle [ X ] l o c v i r A ( X ( σ ) ) [X]^{\mathrm {vir}} _\mathrm {loc}\in A_*(X(\sigma )) . This is achieved by further localizing the Oh-Thomas class which localizes Edidin-Graham’s square root Euler class of a special orthogonal bundle. When the cosection σ \sigma is surjective so that the virtual cycle vanishes, we construct a reduced virtual cycle [ X ] r e d v i r [X]^{\mathrm {vir}} _{\mathrm {red}} . As an application, we prove DT4 vanishing results for hyperkähler 4-folds. All these results hold for virtual structure sheaves and K-theoretic DT4 invariants.

Calabi-Yau 4-fold Donaldson-Thomas不变量的虚环定域
在2020年,Oh和Thomas构造了一个虚环[X] vir∈a∗(X) [X]^{\ maththrm {vir}} \ In A_*(X),在Calabi-Yau 4-fold上稳定束或复的拟射影模空间X X上,DT4不变量可以定义为上同调类的积分。在本文中,证明了虚环定域于阻塞束Ob X Ob_X (X X)的各向同性共截面σ \sigma的零点轨迹X(σ) X(\sigma),构造了一个定域虚环[X] l O c vir∈a∗(X(σ)) [X]^{\mathrm {vir}} _\mathrm {loc}\in A_*(X(\sigma))。这是通过进一步定位Oh-Thomas类来实现的,它定位了一个特殊正交束的Edidin-Graham的平方根欧拉类。当余弦σ \ σ是满射使得虚环消失时,构造了一个约简虚环[X] red vir [X]^{\ mathm {vir}} _{\ mathm {red}}。作为应用,我们证明了hyperkähler 4-fold的DT4消失结果。所有这些结果都适用于虚结构轴和k理论DT4不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信