{"title":"Localizing virtual cycles for Donaldson-Thomas invariants of Calabi-Yau 4-folds","authors":"Y. Kiem, Hyeonjun Park","doi":"10.1090/jag/816","DOIUrl":null,"url":null,"abstract":"<p>In 2020, Oh and Thomas constructed a virtual cycle <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket upper X right-bracket Superscript normal v normal i normal r Baseline element-of upper A Subscript asterisk Baseline left-parenthesis upper X right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:msup>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n <mml:mi mathvariant=\"normal\">i</mml:mi>\n <mml:mi mathvariant=\"normal\">r</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msup>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[X]^{\\mathrm {vir}} \\in A_*(X)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for a quasi-projective moduli space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of stable sheaves or complexes over a Calabi-Yau 4-fold against which DT4 invariants may be defined as integrals of cohomology classes. In this paper, we prove that the virtual cycle localizes to the zero locus <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X left-parenthesis sigma right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">X(\\sigma )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of an isotropic cosection <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma\">\n <mml:semantics>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\sigma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of the obstruction sheaf <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O b Subscript upper X\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:msub>\n <mml:mi>b</mml:mi>\n <mml:mi>X</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Ob_X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and construct a localized virtual cycle <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket upper X right-bracket Subscript normal l normal o normal c Superscript normal v normal i normal r Baseline element-of upper A Subscript asterisk Baseline left-parenthesis upper X left-parenthesis sigma right-parenthesis right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:msubsup>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">l</mml:mi>\n <mml:mi mathvariant=\"normal\">o</mml:mi>\n <mml:mi mathvariant=\"normal\">c</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n <mml:mi mathvariant=\"normal\">i</mml:mi>\n <mml:mi mathvariant=\"normal\">r</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msubsup>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[X]^{\\mathrm {vir}} _\\mathrm {loc}\\in A_*(X(\\sigma ))</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This is achieved by further localizing the Oh-Thomas class which localizes Edidin-Graham’s square root Euler class of a special orthogonal bundle. When the cosection <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma\">\n <mml:semantics>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\sigma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is surjective so that the virtual cycle vanishes, we construct a reduced virtual cycle <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket upper X right-bracket Subscript normal r normal e normal d Superscript normal v normal i normal r\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:msubsup>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">r</mml:mi>\n <mml:mi mathvariant=\"normal\">e</mml:mi>\n <mml:mi mathvariant=\"normal\">d</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n <mml:mi mathvariant=\"normal\">i</mml:mi>\n <mml:mi mathvariant=\"normal\">r</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msubsup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[X]^{\\mathrm {vir}} _{\\mathrm {red}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. As an application, we prove DT4 vanishing results for hyperkähler 4-folds. All these results hold for virtual structure sheaves and K-theoretic DT4 invariants.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/816","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
In 2020, Oh and Thomas constructed a virtual cycle [X]vir∈A∗(X)[X]^{\mathrm {vir}} \in A_*(X) for a quasi-projective moduli space XX of stable sheaves or complexes over a Calabi-Yau 4-fold against which DT4 invariants may be defined as integrals of cohomology classes. In this paper, we prove that the virtual cycle localizes to the zero locus X(σ)X(\sigma ) of an isotropic cosection σ\sigma of the obstruction sheaf ObXOb_X of XX and construct a localized virtual cycle [X]locvir∈A∗(X(σ))[X]^{\mathrm {vir}} _\mathrm {loc}\in A_*(X(\sigma )). This is achieved by further localizing the Oh-Thomas class which localizes Edidin-Graham’s square root Euler class of a special orthogonal bundle. When the cosection σ\sigma is surjective so that the virtual cycle vanishes, we construct a reduced virtual cycle [X]redvir[X]^{\mathrm {vir}} _{\mathrm {red}}. As an application, we prove DT4 vanishing results for hyperkähler 4-folds. All these results hold for virtual structure sheaves and K-theoretic DT4 invariants.
期刊介绍:
The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology.
This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.