Quaternary deformation patterns in East–Central Iran, constrained by coseismic–postseismic displacements of the 2017 Hojedk triplet earthquake in the Kerman Province

IF 2.1 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Marzieh Khalili , Yildirim Dilek , Leila Zareian Ronizi
{"title":"Quaternary deformation patterns in East–Central Iran, constrained by coseismic–postseismic displacements of the 2017 Hojedk triplet earthquake in the Kerman Province","authors":"Marzieh Khalili ,&nbsp;Yildirim Dilek ,&nbsp;Leila Zareian Ronizi","doi":"10.1016/j.jog.2022.101941","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The Central Iranian Microcontinent (CIM) in east-central Iran is located north of the active Arabia–Eurasia collision zone. Here, we report on the structure, deformation patterns, and earthquake occurrences along the dextral Lakar–Kuh and Godar fault systems in the CIM. The geometry of these fault systems marks a major restraining bend responsible for surface and rock uplift in the Plio–Pleistocene that produced the Mian Kuh mountain range. The 2017 Hojedk triplet earthquake (Mw = 5.8–6.0) occurred in the Mian Kuh Range. Sentinel–1 A Interferometer Synthetic Aperture Radar (InSAR) images (descending and ascending) were used to extract the coseismic displacements associated with the earthquake and its </span>aftershocks. The results indicate a maximum displacement of ∼20 cm, corresponding to hanging wall uplift along the radar Line-of-Sight (LOS) direction. The Geodetic Bayesian Inversion (GBIS) of the coseismic deformation indicates that the causative faults of the Hojedk earthquakes were two reverse faults with NW–SE–strikes and SW–dips, with minor dextral slip components. Given the </span>focal mechanism<span> solutions and the epicenter<span> locations of the triple earthquake sequence, we infer that these faults at the southern termination of the Lakar–Kuh Fault represent two segments (with different dip angles) of a previously unrecognized, blind reverse fault (a splay of the Godar Fault at depth). The Hojedk Earthquake and the geometry and kinematics of its causative faults highlight the strong potential of seismic hazard zones along the strike-slip fault systems in the CIM.</span></span></p></div>","PeriodicalId":54823,"journal":{"name":"Journal of Geodynamics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodynamics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026437072200045X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Central Iranian Microcontinent (CIM) in east-central Iran is located north of the active Arabia–Eurasia collision zone. Here, we report on the structure, deformation patterns, and earthquake occurrences along the dextral Lakar–Kuh and Godar fault systems in the CIM. The geometry of these fault systems marks a major restraining bend responsible for surface and rock uplift in the Plio–Pleistocene that produced the Mian Kuh mountain range. The 2017 Hojedk triplet earthquake (Mw = 5.8–6.0) occurred in the Mian Kuh Range. Sentinel–1 A Interferometer Synthetic Aperture Radar (InSAR) images (descending and ascending) were used to extract the coseismic displacements associated with the earthquake and its aftershocks. The results indicate a maximum displacement of ∼20 cm, corresponding to hanging wall uplift along the radar Line-of-Sight (LOS) direction. The Geodetic Bayesian Inversion (GBIS) of the coseismic deformation indicates that the causative faults of the Hojedk earthquakes were two reverse faults with NW–SE–strikes and SW–dips, with minor dextral slip components. Given the focal mechanism solutions and the epicenter locations of the triple earthquake sequence, we infer that these faults at the southern termination of the Lakar–Kuh Fault represent two segments (with different dip angles) of a previously unrecognized, blind reverse fault (a splay of the Godar Fault at depth). The Hojedk Earthquake and the geometry and kinematics of its causative faults highlight the strong potential of seismic hazard zones along the strike-slip fault systems in the CIM.

2017年克尔曼省Hojedk三重地震同震后位移约束下伊朗中东部第四纪形变模式
伊朗中部微大陆(CIM)位于伊朗中东部,位于活跃的阿拉伯-欧亚碰撞带以北。在这里,我们报道了沿中印大陆的拉卡尔-库和戈达尔断层系统的结构、变形模式和地震发生情况。这些断裂系统的几何形状标志着一个主要的抑制弯曲,负责上新世-更新世的地表和岩石隆起,产生了勉库山脉。2017年Hojedk三重地震(Mw = 5.8-6.0)发生在米安库山脉。利用sentinel - 1a干涉仪合成孔径雷达(InSAR)图像(下降和上升)提取与地震及其余震相关的同震位移。结果表明,最大位移为~ 20 cm,对应于沿雷达视距(LOS)方向的上壁隆起。同震形变的大地测量贝叶斯反演(GBIS)表明,Hojedk地震的成因断裂是两条北西-东向和西向的逆断层,具有较小的右向滑动分量。根据震源机制解和三次地震序列的震中位置,我们推断拉卡尔-库赫断裂带南端的这些断裂代表了一个以前未被识别的盲逆断层(戈达尔断裂带的一个深展)的两个片段(倾角不同)。Hojedk地震及其成因断层的几何和运动学突出了沿CIM走滑断层系统的地震危险区的强大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geodynamics
Journal of Geodynamics 地学-地球化学与地球物理
CiteScore
4.60
自引率
0.00%
发文量
21
审稿时长
6-12 weeks
期刊介绍: The Journal of Geodynamics is an international and interdisciplinary forum for the publication of results and discussions of solid earth research in geodetic, geophysical, geological and geochemical geodynamics, with special emphasis on the large scale processes involved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信