Experimental investigation of 3D-printed auxetic core sandwich structures under quasi-static and dynamic compression and bending loads

IF 2.1 Q2 ENGINEERING, CIVIL
İnci Türkoǧlu, Hasan Kasım, M. Yazıcı
{"title":"Experimental investigation of 3D-printed auxetic core sandwich structures under quasi-static and dynamic compression and bending loads","authors":"İnci Türkoǧlu, Hasan Kasım, M. Yazıcı","doi":"10.1177/20414196221079366","DOIUrl":null,"url":null,"abstract":"Auxiliary metamaterials designed according to the Negative Poisson’s Ratio (NPR) property are exciting structures due to their high impact strength, impact energy absorption abilities, and different damage mechanisms. These good mechanical features are suitable for aviation, automotive, and protective construction applications. These structures, whose most significant disadvantages are production difficulties, have become easier to produce with the development of 3D production technology and have been the subject of many studies in recent years. In this presented study, two conventional core geometries and three different auxetic geometries, commonly used in sandwich structures, were designed and produced with 3D printer technology. The strength and energy absorption capabilities of prototype sandwich structures investigated experimentally under bending loads with static and dynamic compression. Except for the re-entrant (RE) type core, the auxetic core foam sandwich structures demonstrate higher rigidity and load-carrying capacity than classical sinusoidal corrugated (SC) core and honeycomb (HC) core sandwich structures under both quasi-static and impact-loaded compression and three-point bending experiments. Double arrowhead (DAH) and tetrachiral (TC) auxetic cores outperformed honeycomb core in terms of specific quasi-static and impact load-bearing performance under compression by 1.5 ± 0.25 times. In three-point bending experiments under both quasi-static and impact loading conditions, the load-carrying capacity of the double arrowhead and tetrachiral auxetic cores was found to be more than 1,86 ± 0.38 times that of the honeycomb core sandwich panels.","PeriodicalId":46272,"journal":{"name":"International Journal of Protective Structures","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Protective Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20414196221079366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 7

Abstract

Auxiliary metamaterials designed according to the Negative Poisson’s Ratio (NPR) property are exciting structures due to their high impact strength, impact energy absorption abilities, and different damage mechanisms. These good mechanical features are suitable for aviation, automotive, and protective construction applications. These structures, whose most significant disadvantages are production difficulties, have become easier to produce with the development of 3D production technology and have been the subject of many studies in recent years. In this presented study, two conventional core geometries and three different auxetic geometries, commonly used in sandwich structures, were designed and produced with 3D printer technology. The strength and energy absorption capabilities of prototype sandwich structures investigated experimentally under bending loads with static and dynamic compression. Except for the re-entrant (RE) type core, the auxetic core foam sandwich structures demonstrate higher rigidity and load-carrying capacity than classical sinusoidal corrugated (SC) core and honeycomb (HC) core sandwich structures under both quasi-static and impact-loaded compression and three-point bending experiments. Double arrowhead (DAH) and tetrachiral (TC) auxetic cores outperformed honeycomb core in terms of specific quasi-static and impact load-bearing performance under compression by 1.5 ± 0.25 times. In three-point bending experiments under both quasi-static and impact loading conditions, the load-carrying capacity of the double arrowhead and tetrachiral auxetic cores was found to be more than 1,86 ± 0.38 times that of the honeycomb core sandwich panels.
三维打印膨胀芯夹层结构在准静态和动态压缩和弯曲载荷下的实验研究
根据负泊松比(NPR)特性设计的辅助超材料由于其高冲击强度、冲击能量吸收能力和不同的损伤机制而成为令人兴奋的结构。这些良好的机械特性适用于航空、汽车和防护结构应用。这些结构的最大缺点是生产困难,随着3D生产技术的发展,这些结构变得更容易生产,近年来成为许多研究的主题。在本研究中,使用3D打印机技术设计和生产了两种常用于三明治结构的传统型芯几何形状和三种不同的膨胀几何形状。在静态和动态压缩的弯曲载荷下,对原型夹层结构的强度和能量吸收能力进行了实验研究。除了凹入(re)型芯外,在准静态和冲击载荷压缩和三点弯曲实验下,膨胀芯泡沫夹层结构表现出比经典正弦波纹(SC)芯和蜂窝(HC)芯夹层结构更高的刚度和承载能力。双箭头(DAH)和四棱柱(TC)膨胀芯在压缩下的特定准静态和冲击承载性能方面优于蜂窝芯1.5±0.25倍。在准静态和冲击载荷条件下的三点弯曲实验中,发现双箭头和四棱柱体膨胀芯的承载能力是蜂窝芯夹芯板的1.86±0.38倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
25.00%
发文量
48
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信