Surface Properties and Reactivity of Phosphate-based Glasses by Inverse Gas Chromatography and Dynamic Vapour Sorption

Q1 Materials Science
Shiva Naseri, William C. Lepry, M. S. Mohammadi, K. Waters, S. Nazhat
{"title":"Surface Properties and Reactivity of Phosphate-based Glasses by Inverse Gas Chromatography and Dynamic Vapour Sorption","authors":"Shiva Naseri, William C. Lepry, M. S. Mohammadi, K. Waters, S. Nazhat","doi":"10.1515/bglass-2018-0012","DOIUrl":null,"url":null,"abstract":"Abstract The chemical durability of phosphate-based glasses (PGs) in an aqueous environment is crucial in determining their dissolution properties and their ultimate performance in vivo. In this study, inverse gas chromatography (IGC) and dynamic vapour sorption (DVS)were used to investigate the short-term aqueous interactions of PG particles doped with SiO2 and TiO2 (50P2O5-40CaO-xSiO2- (10-x)TiO2, where x=7, 5, 3, and 0 mol%). IGC was used to evaluate the solubility parameter and surface energy of PGs. A good correlation between the polar parts of the solubility parameter and surface energy with glass transition temperature (Tg) and dissolution rates was demonstrated. DVS was applied to monitor the sorption characteristics of the PG particles. An increase in silica content resulted in greater vapour sorption and mass change. Nuclear magnetic resonance spectroscopy data of the PGs post exposure to vapour demonstrated that increased SiO2 content disrupted the glass network and formed protonated phosphate species. Fourier transform infrared spectroscopy verified the presence of non-reacted water molecules in the PGs depending on SiO2 content. Moreover, there was a good correlation between the values measured through IGC and DVS, demonstrating the ability of both techniques in predicting the dissolution properties of PGs as consequence of alterations in their chemistry.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2018-0012","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Glasses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bglass-2018-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract The chemical durability of phosphate-based glasses (PGs) in an aqueous environment is crucial in determining their dissolution properties and their ultimate performance in vivo. In this study, inverse gas chromatography (IGC) and dynamic vapour sorption (DVS)were used to investigate the short-term aqueous interactions of PG particles doped with SiO2 and TiO2 (50P2O5-40CaO-xSiO2- (10-x)TiO2, where x=7, 5, 3, and 0 mol%). IGC was used to evaluate the solubility parameter and surface energy of PGs. A good correlation between the polar parts of the solubility parameter and surface energy with glass transition temperature (Tg) and dissolution rates was demonstrated. DVS was applied to monitor the sorption characteristics of the PG particles. An increase in silica content resulted in greater vapour sorption and mass change. Nuclear magnetic resonance spectroscopy data of the PGs post exposure to vapour demonstrated that increased SiO2 content disrupted the glass network and formed protonated phosphate species. Fourier transform infrared spectroscopy verified the presence of non-reacted water molecules in the PGs depending on SiO2 content. Moreover, there was a good correlation between the values measured through IGC and DVS, demonstrating the ability of both techniques in predicting the dissolution properties of PGs as consequence of alterations in their chemistry.
反相气相色谱法和动态气相吸附法研究磷酸盐玻璃的表面性质和反应性
摘要磷酸盐基玻璃(PG)在水性环境中的化学耐久性对于决定其在体内的溶解性能和最终性能至关重要。在本研究中,使用反相气相色谱法(IGC)和动态气相吸附法(DVS)研究了掺杂SiO2和TiO2(50P2O5-40CaO-xSiO2-(10-x)TiO2,其中x=7、5、3和0 mol%)的PG颗粒的短期水性相互作用。IGC用于评估PGs的溶解度参数和表面能。溶解度参数和表面能的极性部分与玻璃化转变温度(Tg)和溶解速率之间存在良好的相关性。DVS用于监测PG颗粒的吸附特性。二氧化硅含量的增加导致更大的蒸汽吸收和质量变化。暴露于蒸汽后的PG的核磁共振波谱数据表明,SiO2含量的增加破坏了玻璃网络并形成质子化的磷酸盐物种。傅立叶变换红外光谱验证了PG中存在未反应的水分子,这取决于SiO2含量。此外,通过IGC和DVS测量的值之间存在良好的相关性,证明了这两种技术在预测PG的溶解特性方面的能力,因为PG的化学性质发生了变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Glasses
Biomedical Glasses Materials Science-Surfaces, Coatings and Films
自引率
0.00%
发文量
0
审稿时长
17 weeks
期刊介绍: Biomedical Glasses is an international Open Access-only journal covering the field of glasses for biomedical applications. The scope of the journal covers the science and technology of glasses and glass-based materials intended for applications in medicine and dentistry. It includes: Chemistry, physics, structure, design and characterization of biomedical glasses Surface science and interactions of biomedical glasses with aqueous and biological media Modeling structure and reactivity of biomedical glasses and their interfaces Biocompatibility of biomedical glasses Processing of biomedical glasses to achieve specific forms and functionality Biomedical glass coatings and composites In vitro and in vivo evaluation of biomedical glasses Glasses and glass-ceramics in engineered regeneration of tissues and organs Glass-based devices for medical and dental applications Application of glasses and glass-ceramics in healthcare.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信