Adjacencies on random ordering polytopes and flow polytopes

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jean-Paul Doignon , Kota Saito
{"title":"Adjacencies on random ordering polytopes and flow polytopes","authors":"Jean-Paul Doignon ,&nbsp;Kota Saito","doi":"10.1016/j.jmp.2023.102768","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The Multiple Choice Polytope (MCP) is the prediction range of a random utility model due to Block and Marschak(1960). Fishburn(1998) offers a nice survey of the findings on random utility models at the time. A complete characterization of the MCP is a remarkable achievement of Falmagne (1978). To derive a more enlightening proof of Falmagne Theorem, Fiorini(2004) assimilates the MCP with the flow polytope of some acyclic network. However, apart from a recognition of the facets by Suck(2002), the </span>geometric structure of the MCP was apparently not much investigated. We characterize the adjacency of vertices and the adjacency of facets. Our characterization of the edges of the MCP helps understand recent findings in economics papers such as Chang, Narita and Saito(2022) and Turansick(2022). Moreover, our results on adjacencies also hold for the flow polytope of any acyclic network. In particular, they apply not only to the MCP, but also to three polytopes which Davis-Stober, Doignon, Fiorini, Glineur and Regenwetter (2018) introduced as extended formulations of the </span>weak order polytope, interval order polytope and semiorder polytope (the prediction ranges of other models, see for instance Fishburn and Falmagne, 1989, and Marley and Regenwetter, 2017).</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002224962300024X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4

Abstract

The Multiple Choice Polytope (MCP) is the prediction range of a random utility model due to Block and Marschak(1960). Fishburn(1998) offers a nice survey of the findings on random utility models at the time. A complete characterization of the MCP is a remarkable achievement of Falmagne (1978). To derive a more enlightening proof of Falmagne Theorem, Fiorini(2004) assimilates the MCP with the flow polytope of some acyclic network. However, apart from a recognition of the facets by Suck(2002), the geometric structure of the MCP was apparently not much investigated. We characterize the adjacency of vertices and the adjacency of facets. Our characterization of the edges of the MCP helps understand recent findings in economics papers such as Chang, Narita and Saito(2022) and Turansick(2022). Moreover, our results on adjacencies also hold for the flow polytope of any acyclic network. In particular, they apply not only to the MCP, but also to three polytopes which Davis-Stober, Doignon, Fiorini, Glineur and Regenwetter (2018) introduced as extended formulations of the weak order polytope, interval order polytope and semiorder polytope (the prediction ranges of other models, see for instance Fishburn and Falmagne, 1989, and Marley and Regenwetter, 2017).

Abstract Image

随机排序多面体和流动多面体上的邻接关系
多选多点(MCP)是Block和Marschak(1960)提出的随机效用模型的预测范围。Fishburn(1998)对当时的随机实用新型的发现进行了很好的调查。对MCP的完整表征是Falmagne(1978)的一项非凡成就。为了得到Falmagne定理的更具启发性的证明,Fiorini(2004)将MCP与一些非循环网络的流多面体同化。然而,除了Suck(2002)对小平面的认识外,MCP的几何结构显然没有得到太多研究。我们刻画了顶点的邻接性和小平面的邻接性。我们对MCP边缘的描述有助于理解Chang、Narita和Saito(2022)以及Turansick(2022)等经济学论文中的最新发现。此外,我们关于邻接的结果也适用于任何非循环网络的流多面体。特别是,它们不仅适用于MCP,还适用于Davis Stober、Doignon、Fiorini、Glineur和Regenwetter(2018)引入的三个多面体,作为弱阶多面体、区间阶多面体和半阶多面体的扩展公式(其他模型的预测范围,见Fishburn和Falmagne,1989,以及Marley和Regenwitter,2017)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信