Chuan Tang, Rui Gao, Xiaoyuan Tang, Yu Zhang, Weixing Feng, Baomin Feng, Xuan Lu
{"title":"Metabolites isolated from Penicillium HDS-Z-1E, an endophytic fungal strain isolated from Taxus cuspidata and their activation effect of catalase","authors":"Chuan Tang, Rui Gao, Xiaoyuan Tang, Yu Zhang, Weixing Feng, Baomin Feng, Xuan Lu","doi":"10.1016/j.chmed.2022.12.009","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>To study the compounds isolated from <em>Penicillium</em> HDS-Z-1E, an endophytic fungal strain isolated from <em>Taxus cuspidata</em> and their activation effect of catalase (CAT).</p></div><div><h3>Methods</h3><p>The chemical constituents were isolated from <em>Penicillium</em> HDS-Z-1E, by using silica gel, Sephadex LH-20 and HPLC. The structural elucidations of five metabolites were elucidated on the basis of spectroscopic including <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, HMBC and HSQC. Their activation sites of catalase have been investigated by molecular docking.</p></div><div><h3>Results</h3><p>Five metabolites, compounds (<strong>1</strong>–<strong>5</strong>) were isolated from <em>Penicillium</em> HDS-Z-1E and identified as 4-hydroxy-4-methyltetrahydro-2<em>H</em>-pyran-2-one (<strong>1</strong>), 4-hydroxymethyl-5, 6-dihydro-pyran-2-one (<strong>2</strong>), 5, 6-dihydro-2-oxo-2<em>H</em>-pyran-4-carboxylic (<strong>3</strong>), <em>N</em>-acetyl-hydrazinobenzoic acid (<strong>4</strong>), and methyl 2-(2, 5-dihydroxyphenyl) acetate (<strong>5</strong>).</p></div><div><h3>Conclusion</h3><p>Compound <strong>3</strong> is a new compound. Compounds <strong>3</strong> and <strong>4</strong> may have potential activators of catalase, providing a theoretical basis for the development of CAT activators.</p></div>","PeriodicalId":9916,"journal":{"name":"Chinese Herbal Medicines","volume":"16 2","pages":"Pages 227-230"},"PeriodicalIF":4.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674638423000515/pdfft?md5=33e6a3b81bc02850668e73681a37affc&pid=1-s2.0-S1674638423000515-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Herbal Medicines","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674638423000515","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
To study the compounds isolated from Penicillium HDS-Z-1E, an endophytic fungal strain isolated from Taxus cuspidata and their activation effect of catalase (CAT).
Methods
The chemical constituents were isolated from Penicillium HDS-Z-1E, by using silica gel, Sephadex LH-20 and HPLC. The structural elucidations of five metabolites were elucidated on the basis of spectroscopic including 1H-NMR, 13C-NMR, HMBC and HSQC. Their activation sites of catalase have been investigated by molecular docking.
Results
Five metabolites, compounds (1–5) were isolated from Penicillium HDS-Z-1E and identified as 4-hydroxy-4-methyltetrahydro-2H-pyran-2-one (1), 4-hydroxymethyl-5, 6-dihydro-pyran-2-one (2), 5, 6-dihydro-2-oxo-2H-pyran-4-carboxylic (3), N-acetyl-hydrazinobenzoic acid (4), and methyl 2-(2, 5-dihydroxyphenyl) acetate (5).
Conclusion
Compound 3 is a new compound. Compounds 3 and 4 may have potential activators of catalase, providing a theoretical basis for the development of CAT activators.
期刊介绍:
Chinese Herbal Medicines is intended to disseminate the latest developments and research progress in traditional and herbal medical sciences to researchers, practitioners, academics and administrators worldwide in the field of traditional and herbal medicines. The journal's international coverage ensures that research and progress from all regions of the world are widely included.
CHM is a core journal of Chinese science and technology. The journal entered into the ESCI database in 2017, and then was included in PMC, Scopus and other important international search systems. In 2019, CHM was successfully selected for the “China Science and Technology Journal Excellence Action Plan” project, which has markedly improved its international influence and industry popularity. CHM obtained the first impact factor of 3.8 in Journal Citation Reports (JCR) in 2023.