Correlations of multiplicative functions in function fields

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2022-12-10 DOI:10.1112/mtk.12181
Oleksiy Klurman, Alexander P. Mangerel, Joni Teräväinen
{"title":"Correlations of multiplicative functions in function fields","authors":"Oleksiy Klurman,&nbsp;Alexander P. Mangerel,&nbsp;Joni Teräväinen","doi":"10.1112/mtk.12181","DOIUrl":null,"url":null,"abstract":"<p>We develop an approach to study character sums, weighted by a multiplicative function <math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>:</mo>\n <msub>\n <mi>F</mi>\n <mi>q</mi>\n </msub>\n <mrow>\n <mo>[</mo>\n <mi>t</mi>\n <mo>]</mo>\n </mrow>\n <mo>→</mo>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n </mrow>\n <annotation>$f\\colon \\mathbb {F}_q[t]\\rightarrow S^1$</annotation>\n </semantics></math>, of the form\n\n </p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12181","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12181","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We develop an approach to study character sums, weighted by a multiplicative function f : F q [ t ] S 1 $f\colon \mathbb {F}_q[t]\rightarrow S^1$ , of the form

函数场中乘法函数的相关性
我们开发了一种研究特征和的方法,通过乘法函数f:Fq[t]进行加权→S1$f\colon\mathbb{F}_q[t] \rightarrow S^1$,形式为∑deg(G)=NGmonif(G)x2(G)ξ(G{F}_q[t] $。然后,我们在函数域Fq[t]$\mathbb上推导出Matomäki–Radziwiłł{F}_q[t] $,其中q是固定的。前者改进了Gorodetsky的工作,后者扩展了Sawin–Shusterman关于Möbius函数对各种q值的相关性的工作。与整数设置相比,我们遇到了不同的现象,特别是在q是2的幂的情况下的低特征问题。作为我们结果的一个应用,我们给出了Kátai关于小增量乘法函数分类的猜想的函数域版本的简短证明,所获得的分类和证明不同于整数情况下的现有分类和证明。在一篇配套论文中,我们使用这些结果来刻画函数域中乘法函数的部分和的极限行为,特别是解决Fq[t]$\mathbb上Erdõs差异问题的“校正”形式{F}_q[t] $。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信