On the largest prime factor of non-zero Fourier coefficients of Hecke eigenforms

IF 1 3区 数学 Q1 MATHEMATICS
S. Gun, Sunil L. Naik
{"title":"On the largest prime factor of non-zero Fourier coefficients of Hecke eigenforms","authors":"S. Gun, Sunil L. Naik","doi":"10.1515/forum-2023-0050","DOIUrl":null,"url":null,"abstract":"Abstract Let τ denote the Ramanujan tau function. One is interested in possible prime values of τ function. Since τ is multiplicative and τ ⁢ ( n ) {\\tau(n)} is odd if and only if n is an odd square, we only need to consider τ ⁢ ( p 2 ⁢ n ) {\\tau(p^{2n})} for primes p and natural numbers n ≥ 1 {n\\geq 1} . This is a rather delicate question. In this direction, we show that for any ϵ > 0 {\\epsilon>0} and integer n ≥ 1 {n\\geq 1} , the largest prime factor of τ ⁢ ( p 2 ⁢ n ) {\\tau(p^{2n})} , denoted by P ⁢ ( τ ⁢ ( p 2 ⁢ n ) ) {P(\\tau(p^{2n}))} , satisfies P ⁢ ( τ ⁢ ( p 2 ⁢ n ) ) > ( log ⁡ p ) 1 8 ⁢ ( log ⁡ log ⁡ p ) 3 8 - ϵ P(\\tau(p^{2n}))>(\\log p)^{\\frac{1}{8}}(\\log\\log p)^{\\frac{3}{8}-\\epsilon} for almost all primes p. This improves a recent work of Bennett, Gherga, Patel and Siksek. Our results are also valid for any non-CM normalized Hecke eigenforms with integer Fourier coefficients.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0050","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let τ denote the Ramanujan tau function. One is interested in possible prime values of τ function. Since τ is multiplicative and τ ⁢ ( n ) {\tau(n)} is odd if and only if n is an odd square, we only need to consider τ ⁢ ( p 2 ⁢ n ) {\tau(p^{2n})} for primes p and natural numbers n ≥ 1 {n\geq 1} . This is a rather delicate question. In this direction, we show that for any ϵ > 0 {\epsilon>0} and integer n ≥ 1 {n\geq 1} , the largest prime factor of τ ⁢ ( p 2 ⁢ n ) {\tau(p^{2n})} , denoted by P ⁢ ( τ ⁢ ( p 2 ⁢ n ) ) {P(\tau(p^{2n}))} , satisfies P ⁢ ( τ ⁢ ( p 2 ⁢ n ) ) > ( log ⁡ p ) 1 8 ⁢ ( log ⁡ log ⁡ p ) 3 8 - ϵ P(\tau(p^{2n}))>(\log p)^{\frac{1}{8}}(\log\log p)^{\frac{3}{8}-\epsilon} for almost all primes p. This improves a recent work of Bennett, Gherga, Patel and Siksek. Our results are also valid for any non-CM normalized Hecke eigenforms with integer Fourier coefficients.
关于赫克特征型的非零傅立叶系数的最大素数因子
设τ表示Ramanujanτ函数。人们对τ函数的可能素数感兴趣。由于τ是乘性的,并且τ(n){\tau(n)}是奇的当且仅当n是奇平方,因此我们只需要考虑素数p和自然数n≥1的τ(p2 n){\tau(p^{2n})}。这是一个相当微妙的问题。在这个方向上,我们证明了对于任何ε>0{ε>0}和整数n≥1{n\geq 1},τ(p2 n){\tau(p^{2n})}的最大素因子,表示为p(τ(p2 n)){p(\tau(p ^{2n}))},满足p(τ⁡ p)1 8(日志⁡ 日志⁡ p)3 8-εp(\tau(p^{2n}))>(\log p)^{\frac{1}{8}}{8}-\ε},这改进了Bennett、Gherga、Patel和Siksek最近的一项工作。我们的结果也适用于任何具有整数傅立叶系数的非CM归一化Hecke本征形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信