Tramates trogii biomass in carboxymethylcellulose-lignin composite beads for adsorption and biodegradation of bisphenol A

IF 3.1 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Gulay Bayramoglu, Murat Kilic, Mehmet Yakup Arica
{"title":"Tramates trogii biomass in carboxymethylcellulose-lignin composite beads for adsorption and biodegradation of bisphenol A","authors":"Gulay Bayramoglu,&nbsp;Murat Kilic,&nbsp;Mehmet Yakup Arica","doi":"10.1007/s10532-023-10024-7","DOIUrl":null,"url":null,"abstract":"<div><p><i>Tramates trogii biomass</i> was immobilized in carboxymethyl cellulose-lignin composite beads via cross-linking with Fe(III) ions (i.e., Fe(III)-CMC@Lig(1–4)@FB). The composite beads formulations were used for the adsorption and degradation of bisphenol A (BPA) using the free fungal biomass as a control system. The maximum adsorption capacity of the free fungal biomass and Fe(III)-CMC@Lig-3@FB for BPA was found to be 57.8 and 95.6, mg/g, respectively. The degradation rates of BPA were found to be 87.8 and 89.6% for the free fungal biomass and Fe(III)CMC@Lig-3@FB for 72 h in a batch reactor, respectively. Adsorption of BPA on the free fungal biomass and Fe(III)CMC@Lig-3@FB fungal preparations described by the Langmuir and Temkin isotherm models, and the pseudo-second-order kinetic model. The values of Gibbs free energy of adsorption (ΔG°) were − 20.7 and − 25.8 kJ/mol at 298 K for BPA on the free fungal biomass and Fe(III)-CMC@Lig-3@FB beads, respectively. Moreover, the toxicities of the BPA and degradation products were evaluated with three different test organisms: (i) a freshwater micro-crustacean (<i>Daphnia magna</i>), (ii) a freshwater algae (<i>Chlamydomonas reinhardti</i>), and (iii) a Turkish winter wheat seed (<i>Triticum aestivum</i> L.). After treatment with the Fe(III)CMC@Lig-3@FB formulation, the degradation products had not any significant toxic effect compared to pure BPA. This work shows that the prepared composite bioactive system had a high potential for degradation of BPA from an aqueous medium without producing toxic end-products. Thus, it could be a good candidate for environmentally safe biological methods.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"34 3","pages":"263 - 281"},"PeriodicalIF":3.1000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-023-10024-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

Tramates trogii biomass was immobilized in carboxymethyl cellulose-lignin composite beads via cross-linking with Fe(III) ions (i.e., Fe(III)-CMC@Lig(1–4)@FB). The composite beads formulations were used for the adsorption and degradation of bisphenol A (BPA) using the free fungal biomass as a control system. The maximum adsorption capacity of the free fungal biomass and Fe(III)-CMC@Lig-3@FB for BPA was found to be 57.8 and 95.6, mg/g, respectively. The degradation rates of BPA were found to be 87.8 and 89.6% for the free fungal biomass and Fe(III)CMC@Lig-3@FB for 72 h in a batch reactor, respectively. Adsorption of BPA on the free fungal biomass and Fe(III)CMC@Lig-3@FB fungal preparations described by the Langmuir and Temkin isotherm models, and the pseudo-second-order kinetic model. The values of Gibbs free energy of adsorption (ΔG°) were − 20.7 and − 25.8 kJ/mol at 298 K for BPA on the free fungal biomass and Fe(III)-CMC@Lig-3@FB beads, respectively. Moreover, the toxicities of the BPA and degradation products were evaluated with three different test organisms: (i) a freshwater micro-crustacean (Daphnia magna), (ii) a freshwater algae (Chlamydomonas reinhardti), and (iii) a Turkish winter wheat seed (Triticum aestivum L.). After treatment with the Fe(III)CMC@Lig-3@FB formulation, the degradation products had not any significant toxic effect compared to pure BPA. This work shows that the prepared composite bioactive system had a high potential for degradation of BPA from an aqueous medium without producing toxic end-products. Thus, it could be a good candidate for environmentally safe biological methods.

Abstract Image

羧甲基纤维素-木质素复合微珠对双酚A的吸附和生物降解
通过与Fe(III)离子(即Fe(III)-CMC@Lig(1-4)@FB)交联,将trogii Tramates生物质固定在羧甲基纤维素-木质素复合微珠中。以游离真菌生物量为控制体系,利用复合微球对双酚A (BPA)进行吸附和降解。游离真菌生物量和Fe(III)-CMC@Lig-3@FB对BPA的最大吸附量分别为57.8 mg/g和95.6 mg/g。在间歇式反应器中,游离真菌生物量和Fe(III)CMC@Lig-3@FB对BPA的降解率分别为87.8和89.6%。用Langmuir和Temkin等温模型和拟二级动力学模型描述了游离真菌生物量和Fe(III)CMC@Lig-3@FB真菌制剂对BPA的吸附。在298 K下,BPA对游离真菌生物量和Fe(III)-CMC@Lig-3@FB珠粒的吸附吉布斯自由能(ΔG°)分别为−20.7和−25.8 kJ/mol。此外,BPA和降解产物的毒性用三种不同的试验生物进行了评估:(i)淡水微甲壳类动物(大水蚤),(ii)淡水藻类(莱茵衣藻),(iii)土耳其冬小麦种子(Triticum aestivum L.)。经Fe(III)CMC@Lig-3@FB配方处理后,降解产物与纯BPA相比没有明显的毒性作用。这项工作表明,所制备的复合生物活性体系具有从水介质中降解BPA的高潜力,而不会产生有毒的最终产物。因此,它可能是一个很好的候选环境安全的生物方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biodegradation
Biodegradation 工程技术-生物工程与应用微生物
CiteScore
5.60
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms. Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信