Zhu Zhu, Huaiyuan Long, Dichen Tan, Song Wang, Zu-wen Wang, Shunyuan Zhang, Yu Deng
{"title":"Synthesis and Performance Evaluation of Anti Temperature and Salt Resistant Polymer Filtrate Reducer","authors":"Zhu Zhu, Huaiyuan Long, Dichen Tan, Song Wang, Zu-wen Wang, Shunyuan Zhang, Yu Deng","doi":"10.4236/ojogas.2019.44020","DOIUrl":null,"url":null,"abstract":"In the experiment, the filtrate loss of synthetic fluid loss control fluid was recorded in room temperature and high temperature in the composite brine base and sodium chloride brine base slurry, and compared with the filtrate loss before base polymer addition. In this way, the effect of filtration loss and salt resistance and temperature resistance of synthetic polymers were evaluated. The influence of the synthesized polymer on the rheological properties of the composite brine was also evaluated by determining the viscosity of the drilling fluid added to the base slurry and polymer. In the end, the structure of the synthetic polymers was characterized through the infrared spectrum, which initially analyzed through the mechanism of its function in reducing the filter loss. Finally, the products produced according to the recipe are given to the site and added to the two wells to record the drilling fluid performance data.","PeriodicalId":65460,"journal":{"name":"长江油气:英文版","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"长江油气:英文版","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/ojogas.2019.44020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the experiment, the filtrate loss of synthetic fluid loss control fluid was recorded in room temperature and high temperature in the composite brine base and sodium chloride brine base slurry, and compared with the filtrate loss before base polymer addition. In this way, the effect of filtration loss and salt resistance and temperature resistance of synthetic polymers were evaluated. The influence of the synthesized polymer on the rheological properties of the composite brine was also evaluated by determining the viscosity of the drilling fluid added to the base slurry and polymer. In the end, the structure of the synthetic polymers was characterized through the infrared spectrum, which initially analyzed through the mechanism of its function in reducing the filter loss. Finally, the products produced according to the recipe are given to the site and added to the two wells to record the drilling fluid performance data.