M. Moslehi, Hossei Ebrahimpor-Komleh, Salman Goli, Reza Taji
{"title":"A QoS Optimization Technique with Deep Reinforcement Learning in SDN-Based IoT","authors":"M. Moslehi, Hossei Ebrahimpor-Komleh, Salman Goli, Reza Taji","doi":"10.52547/mjee.15.3.105","DOIUrl":null,"url":null,"abstract":": In recent years, exponential growth of communication devices in Internet of Things (IoT) has become an emerging technology which facilitates heterogeneous devices to connect with each other in heterogeneous networks. This communication requires different level of Quality-of-Service (QoS) and policies depending on the device type and location. To provide a specific level of QoS, we can utilize emerging new technological concepts in IoT infrastructure, Software-Defined Network (SDN) and, machine learning algorithms. We use deep reinforcement learning in the process of resource management and allocation in control plane. We present an algorithm that aims to optimize resource allocation. Simulation results show that the proposed algorithm improved network performances in terms of QoS parameters, including delay and throughput compared to Random and Round Robin methods. Compared to similar methods, the performance of the proposed method is also as good as the fuzzy and predictive methods.","PeriodicalId":37804,"journal":{"name":"Majlesi Journal of Electrical Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Majlesi Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/mjee.15.3.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2
Abstract
: In recent years, exponential growth of communication devices in Internet of Things (IoT) has become an emerging technology which facilitates heterogeneous devices to connect with each other in heterogeneous networks. This communication requires different level of Quality-of-Service (QoS) and policies depending on the device type and location. To provide a specific level of QoS, we can utilize emerging new technological concepts in IoT infrastructure, Software-Defined Network (SDN) and, machine learning algorithms. We use deep reinforcement learning in the process of resource management and allocation in control plane. We present an algorithm that aims to optimize resource allocation. Simulation results show that the proposed algorithm improved network performances in terms of QoS parameters, including delay and throughput compared to Random and Round Robin methods. Compared to similar methods, the performance of the proposed method is also as good as the fuzzy and predictive methods.
近年来,物联网(Internet of Things, IoT)通信设备呈指数级增长,已成为一种新兴技术,使异构设备能够在异构网络中相互连接。这种通信需要不同级别的服务质量(QoS)和策略,具体取决于设备类型和位置。为了提供特定级别的QoS,我们可以利用物联网基础设施、软件定义网络(SDN)和机器学习算法中新兴的新技术概念。我们在控制面的资源管理和分配过程中使用了深度强化学习。提出了一种优化资源分配的算法。仿真结果表明,与随机和轮循方法相比,该算法在QoS参数方面提高了网络性能,包括延迟和吞吐量。与同类方法相比,该方法的性能与模糊方法和预测方法相当。
期刊介绍:
The scope of Majlesi Journal of Electrcial Engineering (MJEE) is ranging from mathematical foundation to practical engineering design in all areas of electrical engineering. The editorial board is international and original unpublished papers are welcome from throughout the world. The journal is devoted primarily to research papers, but very high quality survey and tutorial papers are also published. There is no publication charge for the authors.