{"title":"Composition dependent density of ternary aqueous solutions of ionic surfactants and salts","authors":"Silvia M. Calderón, Nønne L. Prisle","doi":"10.1007/s10874-020-09411-8","DOIUrl":null,"url":null,"abstract":"<div><p>Surfactants exist in atmospheric aerosols mixed with inorganic salts and can significantly influence the formation of cloud droplets due to bulk–surface partitioning and surface tension depression. To model these processes, we need continuous parametrizations of the concentration dependent properties of aqueous surfactant–salt solutions for the full composition range from pure water to pure surfactant or salt. We have developed density functions based on the pseudo-separation method and Young’s mixing rule for apparent partial molal volumes for solutions that mimic atmospheric droplets of marine environments. The developed framework requires only model parameters from binary water–salt and water–surfactant systems and includes the effect of salinity on micellization with composition-dependent functions for the critical micelle concentration (CMC). We evaluate different models and data available in the literature to find the most suitable representations of the apparent partial molal volume of sodium chloride (NaCl) in aqueous solutions and the CMC of selected atmospheric and model surfactants in pure water and aqueous NaCl solutions. We compare model results to experimental density data, available in the literature and obtained from additional measurements, for aqueous solutions containing one of the ionic surfactants sodium octanoate, sodium decanoate, sodium dodecanoate or sodium dodecylsulfate mixed with NaCl in different relative ratios. Our model follows the experimental trends of increasing densities with increasing surfactant concentrations or increasing surfactant–salt mixing ratios both, below and above the CMC, capturing the effect of the inorganic salt on the surfactant micellization.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"78 2","pages":"99 - 123"},"PeriodicalIF":3.0000,"publicationDate":"2021-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09411-8","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-020-09411-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 4
Abstract
Surfactants exist in atmospheric aerosols mixed with inorganic salts and can significantly influence the formation of cloud droplets due to bulk–surface partitioning and surface tension depression. To model these processes, we need continuous parametrizations of the concentration dependent properties of aqueous surfactant–salt solutions for the full composition range from pure water to pure surfactant or salt. We have developed density functions based on the pseudo-separation method and Young’s mixing rule for apparent partial molal volumes for solutions that mimic atmospheric droplets of marine environments. The developed framework requires only model parameters from binary water–salt and water–surfactant systems and includes the effect of salinity on micellization with composition-dependent functions for the critical micelle concentration (CMC). We evaluate different models and data available in the literature to find the most suitable representations of the apparent partial molal volume of sodium chloride (NaCl) in aqueous solutions and the CMC of selected atmospheric and model surfactants in pure water and aqueous NaCl solutions. We compare model results to experimental density data, available in the literature and obtained from additional measurements, for aqueous solutions containing one of the ionic surfactants sodium octanoate, sodium decanoate, sodium dodecanoate or sodium dodecylsulfate mixed with NaCl in different relative ratios. Our model follows the experimental trends of increasing densities with increasing surfactant concentrations or increasing surfactant–salt mixing ratios both, below and above the CMC, capturing the effect of the inorganic salt on the surfactant micellization.
期刊介绍:
The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics:
Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only.
The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere.
Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere.
Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.