P. Cumsille, J. González–Marín, Gerardo Honorato, Diego Lugo
{"title":"Disconnected Julia set of Halley's method for exponential maps","authors":"P. Cumsille, J. González–Marín, Gerardo Honorato, Diego Lugo","doi":"10.1080/14689367.2022.2048633","DOIUrl":null,"url":null,"abstract":"We investigate the Halley method of exponential maps. Our main result is that, unlike Newton's method, the Julia set of Halley's method may be disconnected when applied to entire maps of form where p and q are polynomials and q is non-constant. We also describe the nature of the fixed points and classify rational Halley's maps of entire functions.","PeriodicalId":50564,"journal":{"name":"Dynamical Systems-An International Journal","volume":"37 1","pages":"280 - 294"},"PeriodicalIF":0.5000,"publicationDate":"2022-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamical Systems-An International Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2022.2048633","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the Halley method of exponential maps. Our main result is that, unlike Newton's method, the Julia set of Halley's method may be disconnected when applied to entire maps of form where p and q are polynomials and q is non-constant. We also describe the nature of the fixed points and classify rational Halley's maps of entire functions.
期刊介绍:
Dynamical Systems: An International Journal is a world-leading journal acting as a forum for communication across all branches of modern dynamical systems, and especially as a platform to facilitate interaction between theory and applications. This journal publishes high quality research articles in the theory and applications of dynamical systems, especially (but not exclusively) nonlinear systems. Advances in the following topics are addressed by the journal:
•Differential equations
•Bifurcation theory
•Hamiltonian and Lagrangian dynamics
•Hyperbolic dynamics
•Ergodic theory
•Topological and smooth dynamics
•Random dynamical systems
•Applications in technology, engineering and natural and life sciences