Singularity Expansion Method for thin wires and the Method of Modal Parameters

IF 0.6 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
S. Tkachenko, J. Nitsch, Felix Middelstaedt, R. Rambousky, M. Schaarschmidt, R. Vick
{"title":"Singularity Expansion Method for thin wires and the Method of Modal Parameters","authors":"S. Tkachenko, J. Nitsch, Felix Middelstaedt, R. Rambousky, M. Schaarschmidt, R. Vick","doi":"10.5194/ars-17-177-2019","DOIUrl":null,"url":null,"abstract":"Abstract. Here, we describe a technique to define the Singularity\nExpansion Method (SEM) poles for short-circuited thin-wire structures\ndeveloped using the Method of Modal Parameters (MoMP). The MoMP method\nconsists of in the expansion of the system of mixed-potential integral\nequations (MPIE) into the Fourier series, including the kernels containing\nGreen's function. Corresponding equations for Fourier modes contain infinite\nmatrices of p.u.l. inductance and capacitance, and the solution for current\ncan be obtained using the infinity matrix of p.u.l. impedance. The SEM poles\nare given by the zeros of the determinant of this matrix. For the case of\nthe symmetrical circular loop, this equation transforms to one well-know\nfrom the literature. Numerical investigation of solutions for the poles of\nthe first layer has shown good agreement with previously obtained analytical\nand numerical results for different wire configurations.\n","PeriodicalId":45093,"journal":{"name":"Advances in Radio Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Radio Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/ars-17-177-2019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. Here, we describe a technique to define the Singularity Expansion Method (SEM) poles for short-circuited thin-wire structures developed using the Method of Modal Parameters (MoMP). The MoMP method consists of in the expansion of the system of mixed-potential integral equations (MPIE) into the Fourier series, including the kernels containing Green's function. Corresponding equations for Fourier modes contain infinite matrices of p.u.l. inductance and capacitance, and the solution for current can be obtained using the infinity matrix of p.u.l. impedance. The SEM poles are given by the zeros of the determinant of this matrix. For the case of the symmetrical circular loop, this equation transforms to one well-know from the literature. Numerical investigation of solutions for the poles of the first layer has shown good agreement with previously obtained analytical and numerical results for different wire configurations.
细导线奇异展开法及模态参数法
摘要在这里,我们描述了一种使用模态参数法(MoMP)开发的用于短路细线结构的奇异展开法(SEM)极点的定义技术。MoMP方法包括将混合势积分方程组(MPIE)展开为傅立叶级数,包括包含格林函数的核。傅立叶模式的相应方程包含p.u.l.电感和电容的无穷大矩阵,并且可以使用p.u.l.阻抗的无穷大阵来获得电流的解。SEM极点由该矩阵的行列式的零给出。对于对称圆环的情况,这个方程转化为文献中众所周知的方程。对第一层极点解的数值研究表明,对于不同的导线配置,与先前获得的分析和数值结果具有良好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Radio Science
Advances in Radio Science ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
0.90
自引率
0.00%
发文量
3
审稿时长
45 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信