{"title":"Complete genome of Polaribacter huanghezhanensis KCTC 32516T isolated from glaciomarine fjord sediment of Svalbard","authors":"Kyuin Hwang , Hanna Choe , Kyung Mo Kim","doi":"10.1016/j.margen.2023.101068","DOIUrl":null,"url":null,"abstract":"<div><p><em>Polaribacter huanghezhanensis</em> KCTC 32516<sup>T</sup> is an aerobic, non-flagellated, Gram-negative, orange-colony-forming bacterium that was isolated from the surficial glaciomarine sediment of inner basin of Kongsfjorden, Svalbard. The sampling site is characterized by a sedimentation of organic depleted lithogenous particles from the nearby glaciers, resulting in reduction of organic matter concentration. In order to understand microbial adaptation to the oligotrophic environment, we here sequenced the complete genome of the <em>P. huanghezhanensis</em> KCTC 32516<sup>T</sup>. The genome consists of 2,587,874 bp (G + C content of 31.5%) with a single chromosome, 2391 protein-coding genes, 39 tRNAs, and 2 rRNA operons. Our comparative analysis revealed that the <em>P. huanghezhanensis</em> possess the smallest genome in fifteen <em>Polaribacter</em> species with genome. The streamlined genome of this species, required less resource in replication, could evolved by the nutrient deficiency in surrounding environment. Simultaneously, the 15 KOs involved in amino acid biosynthesis and anaplerotic carbon fixation is uniquely absent in the <em>P. huanghezhanensis</em>. In addition, although the advantage of small genome, other 15 KOs involved in resource recycling and stress resistance is uniquely present in sequenced genome. This result demonstrates that the sequenced genome serves as a valuable model for further studies aimed at elucidating the molecular mechanisms associated with adaptation to oligotrophic habitat.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874778723000600","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Polaribacter huanghezhanensis KCTC 32516T is an aerobic, non-flagellated, Gram-negative, orange-colony-forming bacterium that was isolated from the surficial glaciomarine sediment of inner basin of Kongsfjorden, Svalbard. The sampling site is characterized by a sedimentation of organic depleted lithogenous particles from the nearby glaciers, resulting in reduction of organic matter concentration. In order to understand microbial adaptation to the oligotrophic environment, we here sequenced the complete genome of the P. huanghezhanensis KCTC 32516T. The genome consists of 2,587,874 bp (G + C content of 31.5%) with a single chromosome, 2391 protein-coding genes, 39 tRNAs, and 2 rRNA operons. Our comparative analysis revealed that the P. huanghezhanensis possess the smallest genome in fifteen Polaribacter species with genome. The streamlined genome of this species, required less resource in replication, could evolved by the nutrient deficiency in surrounding environment. Simultaneously, the 15 KOs involved in amino acid biosynthesis and anaplerotic carbon fixation is uniquely absent in the P. huanghezhanensis. In addition, although the advantage of small genome, other 15 KOs involved in resource recycling and stress resistance is uniquely present in sequenced genome. This result demonstrates that the sequenced genome serves as a valuable model for further studies aimed at elucidating the molecular mechanisms associated with adaptation to oligotrophic habitat.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.