H. Kazemi, A. Fazli, Jean Philippe Ira, D. Rodrigue
{"title":"Recycled Tire Fibers used as Reinforcement for Recycled Polyethylene Composites","authors":"H. Kazemi, A. Fazli, Jean Philippe Ira, D. Rodrigue","doi":"10.3390/fib11090074","DOIUrl":null,"url":null,"abstract":"This study proposes a simple approach to separate most rubber particles from recycled tire fibers (RTFs) and to determine their rubber content using thermogravimetric analysis (TGA)/calcination. Furthermore, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDAX), and Fourier transform infrared spectroscopy (FTIR) analyses are used to investigate the separation process and materials compositions. Afterwards, a series of composites based on recycled post-consumer low-density polyethylene (rLDPE) with clean fiber (CF) and residual ground rubber particles (GR) is prepared at different filler concentrations (0–30%) via extrusion compounding before using compression molding and injection molding for comparison. In all cases, injection molding leads to higher strength and modulus but lower elongation at break. The results show that incorporating 30 wt.% of CF into rLDPE yields a remarkable improvement in tensile strength (15%), tensile modulus (192%) and flexural modulus (142%). On the other hand, the incorporation of up to 30 wt.% of GR results in a reduction in both tensile strength and flexural modulus by 15%, confirming the critical role of the cleaning process for RTF in achieving the best results.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib11090074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a simple approach to separate most rubber particles from recycled tire fibers (RTFs) and to determine their rubber content using thermogravimetric analysis (TGA)/calcination. Furthermore, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDAX), and Fourier transform infrared spectroscopy (FTIR) analyses are used to investigate the separation process and materials compositions. Afterwards, a series of composites based on recycled post-consumer low-density polyethylene (rLDPE) with clean fiber (CF) and residual ground rubber particles (GR) is prepared at different filler concentrations (0–30%) via extrusion compounding before using compression molding and injection molding for comparison. In all cases, injection molding leads to higher strength and modulus but lower elongation at break. The results show that incorporating 30 wt.% of CF into rLDPE yields a remarkable improvement in tensile strength (15%), tensile modulus (192%) and flexural modulus (142%). On the other hand, the incorporation of up to 30 wt.% of GR results in a reduction in both tensile strength and flexural modulus by 15%, confirming the critical role of the cleaning process for RTF in achieving the best results.
FibersEngineering-Civil and Structural Engineering
CiteScore
7.00
自引率
7.70%
发文量
92
审稿时长
11 weeks
期刊介绍:
Fibers (ISSN 2079-6439) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications on the materials science and all other empirical and theoretical studies of fibers, providing a forum for integrating fiber research across many disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. The following topics are relevant and within the scope of this journal: -textile fibers -natural fibers and biological microfibrils -metallic fibers -optic fibers -carbon fibers -silicon carbide fibers -fiberglass -mineral fibers -cellulose fibers -polymer fibers -microfibers, nanofibers and nanotubes -new processing methods for fibers -chemistry of fiber materials -physical properties of fibers -exposure to and toxicology of fibers -biokinetics of fibers -the diversity of fiber origins