{"title":"Click it or stick it: Covalent and non-covalent methods for protein-self assembly","authors":"Oskar J. Lange, Karen M. Polizzi","doi":"10.1016/j.coisb.2021.100374","DOIUrl":null,"url":null,"abstract":"<div><p>Protein complexes<span> are ubiquitous in living systems and have a range of biotechnological applications. However, building protein structures from scratch can be a difficult and laborious process. Here, we review recent developments in protein self-assembly, including a range of tools for covalent and non-covalent assembly of protein structures with user-defined architectures. Key achievements in covalent protein assembly include the development of systems with fast reaction rates and nM affinities. Non-covalent assembly methods have lagged because of the complexity of natural interactions governing protein assembly; but recent developments have created modular methods that are more broadly applicable. On the horizon, we foresee an increasing role for computational protein design tools as key in cementing the role of applications, as opposed to methodology, as the main driving force of research in this field.</span></p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"28 ","pages":"Article 100374"},"PeriodicalIF":3.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.coisb.2021.100374","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310021000688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Protein complexes are ubiquitous in living systems and have a range of biotechnological applications. However, building protein structures from scratch can be a difficult and laborious process. Here, we review recent developments in protein self-assembly, including a range of tools for covalent and non-covalent assembly of protein structures with user-defined architectures. Key achievements in covalent protein assembly include the development of systems with fast reaction rates and nM affinities. Non-covalent assembly methods have lagged because of the complexity of natural interactions governing protein assembly; but recent developments have created modular methods that are more broadly applicable. On the horizon, we foresee an increasing role for computational protein design tools as key in cementing the role of applications, as opposed to methodology, as the main driving force of research in this field.
期刊介绍:
Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution