Click it or stick it: Covalent and non-covalent methods for protein-self assembly

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Oskar J. Lange, Karen M. Polizzi
{"title":"Click it or stick it: Covalent and non-covalent methods for protein-self assembly","authors":"Oskar J. Lange,&nbsp;Karen M. Polizzi","doi":"10.1016/j.coisb.2021.100374","DOIUrl":null,"url":null,"abstract":"<div><p>Protein complexes<span> are ubiquitous in living systems and have a range of biotechnological applications. However, building protein structures from scratch can be a difficult and laborious process. Here, we review recent developments in protein self-assembly, including a range of tools for covalent and non-covalent assembly of protein structures with user-defined architectures. Key achievements in covalent protein assembly include the development of systems with fast reaction rates and nM affinities. Non-covalent assembly methods have lagged because of the complexity of natural interactions governing protein assembly; but recent developments have created modular methods that are more broadly applicable. On the horizon, we foresee an increasing role for computational protein design tools as key in cementing the role of applications, as opposed to methodology, as the main driving force of research in this field.</span></p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.coisb.2021.100374","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310021000688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Protein complexes are ubiquitous in living systems and have a range of biotechnological applications. However, building protein structures from scratch can be a difficult and laborious process. Here, we review recent developments in protein self-assembly, including a range of tools for covalent and non-covalent assembly of protein structures with user-defined architectures. Key achievements in covalent protein assembly include the development of systems with fast reaction rates and nM affinities. Non-covalent assembly methods have lagged because of the complexity of natural interactions governing protein assembly; but recent developments have created modular methods that are more broadly applicable. On the horizon, we foresee an increasing role for computational protein design tools as key in cementing the role of applications, as opposed to methodology, as the main driving force of research in this field.

点击或粘贴:蛋白质自组装的共价和非共价方法
蛋白质复合物在生命系统中无处不在,具有广泛的生物技术应用。然而,从头开始构建蛋白质结构可能是一个困难而费力的过程。在这里,我们回顾了蛋白质自组装的最新进展,包括一系列用于用户定义结构的蛋白质结构的共价和非共价组装的工具。共价蛋白组装的主要成就包括具有快速反应速率和纳米亲和力的系统的开发。由于控制蛋白质组装的自然相互作用的复杂性,非共价组装方法已经落后;但最近的发展创造了更广泛适用的模块化方法。展望未来,我们预计计算蛋白质设计工具将发挥越来越大的作用,作为巩固应用程序作用的关键,而不是方法论,作为该领域研究的主要推动力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Systems Biology
Current Opinion in Systems Biology Mathematics-Applied Mathematics
CiteScore
7.10
自引率
2.70%
发文量
20
期刊介绍: Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信