Some Estimates for the Cauchy Transform in Higher Dimensions

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Longfei Gu
{"title":"Some Estimates for the Cauchy Transform in Higher Dimensions","authors":"Longfei Gu","doi":"10.1007/s00006-023-01294-8","DOIUrl":null,"url":null,"abstract":"<div><p>We give estimates of the Cauchy transform in Lebesgue integral norms in Clifford analysis framework which are the generalizations of Cauchy transform in complex plane, and mainly establish the <span>\\((L^{p}, L^{q})\\)</span>-boundedness of the Clifford Cauchy transform in Euclidean space <span>\\({\\mathbb {R}^{n+1}}\\)</span> using the Clifford algebra and the Hardy–Littlewood maximal function. Furthermore, we prove Hedberg estimate and Kolmogorov’s inequality related to Clifford Cauchy transform. As applications, some respective results in complex plane are directly obtained. Based on the properties of the Clifford Cauchy transform and the principle of uniform boundedness, we solve existence of solutions to integral equations with Cauchy kernel in quaternionic analysis.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-023-01294-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We give estimates of the Cauchy transform in Lebesgue integral norms in Clifford analysis framework which are the generalizations of Cauchy transform in complex plane, and mainly establish the \((L^{p}, L^{q})\)-boundedness of the Clifford Cauchy transform in Euclidean space \({\mathbb {R}^{n+1}}\) using the Clifford algebra and the Hardy–Littlewood maximal function. Furthermore, we prove Hedberg estimate and Kolmogorov’s inequality related to Clifford Cauchy transform. As applications, some respective results in complex plane are directly obtained. Based on the properties of the Clifford Cauchy transform and the principle of uniform boundedness, we solve existence of solutions to integral equations with Cauchy kernel in quaternionic analysis.

高维柯西变换的一些估计
我们在Clifford分析框架中给出了Lebesgue积分范数中的Cauchy变换的估计,这是Cauchy转换在复平面上的推广,并主要利用Clifford代数和Hardy–Littlewood极大函数建立了Clifford-Cauchy变换在欧几里得空间({\mathbb{R}^{n+1}})中的\(((L^{p},L^{q})\)-有界性。此外,我们还证明了与Clifford-Cauchy变换有关的Hedberg估计和Kolmogorov不等式。作为应用,直接得到了复平面上的一些相应结果。基于Clifford-Cauchy变换的性质和一致有界性原理,我们在四元数分析中求解了具有Cauchy核的积分方程解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信