Discorrelation of multiplicative functions with nilsequences and its application on coefficients of automorphic L-functions

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2022-12-27 DOI:10.1112/mtk.12182
Xiaoguang He, Mengdi Wang
{"title":"Discorrelation of multiplicative functions with nilsequences and its application on coefficients of automorphic L-functions","authors":"Xiaoguang He,&nbsp;Mengdi Wang","doi":"10.1112/mtk.12182","DOIUrl":null,"url":null,"abstract":"<p>We introduce a class of multiplicative functions in which each function satisfies some statistic conditions, and then prove that the above functions are not correlated with finite degree polynomial nilsequences. Besides, we give two applications of this result. One is that the twisting of coefficients of automorphic <i>L</i>-function on <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <msub>\n <mi>L</mi>\n <mi>m</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$GL_m (m \\geqslant 2)$</annotation>\n </semantics></math> and polynomial nilsequences has logarithmic decay; the other is that the mean value of the Möbius function, coefficients of automorphic <i>L</i>-function, and polynomial nilsequences also has logarithmic decay.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12182","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12182","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce a class of multiplicative functions in which each function satisfies some statistic conditions, and then prove that the above functions are not correlated with finite degree polynomial nilsequences. Besides, we give two applications of this result. One is that the twisting of coefficients of automorphic L-function on G L m ( m 2 ) $GL_m (m \geqslant 2)$ and polynomial nilsequences has logarithmic decay; the other is that the mean value of the Möbius function, coefficients of automorphic L-function, and polynomial nilsequences also has logarithmic decay.

乘性函数与幂序列的不相关及其在自同构L-函数系数上的应用
我们引入了一类乘法函数,其中每个函数都满足一些统计条件,然后证明了上述函数与有限次多项式幂序列不相关。此外,我们还给出了这一结果的两个应用。一个是自同构L-函数在GLm(m⩾2)$GL_m(m \geqslant 2)$和多项式幂序列上的系数的扭曲具有对数衰减;另一个是Möbius函数的均值、自同构L‐函数的系数和多项式幂序列也具有对数衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信