Oscillatory Tip Leakage Flows and Stability Enhancement in Axial Compressors

IF 0.9 Q4 ENGINEERING, MECHANICAL
F. Lin, Jingyi Chen
{"title":"Oscillatory Tip Leakage Flows and Stability Enhancement in Axial Compressors","authors":"F. Lin, Jingyi Chen","doi":"10.1155/2018/9076472","DOIUrl":null,"url":null,"abstract":"Rotating stall axial compressor is a difficult research field full of controversy. Over the recent decades, the unsteady tip leakage flows had been discovered and confirmed by several research groups independently. This paper summarizes the research experience on unsteady tip leakage flows and stability enhancement in axial flow compressors. The goal is to provide theoretical bases to design casing treatments and tip air injection for stall margin extension of axial compressor. The research efforts cover (1) the tip flow structure at near stall that can explain why the tip leakage flows go unsteady and (2) the computational and experimental evidences that demonstrate the axial momentum playing an important role in unsteady tip leakage flow. It was found that one of the necessary conditions for tip leakage flow to become unsteady is that a portion of the leakage flow impinges onto the pressure side of the neighboring blade near the leading edge. The impediment of the tip leakage flow against the main incoming flow can be measured by the axial momentum balance within the tip range. With the help of the theoretical progress, the applications are extended to various casing treatments and tip air recirculation.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2018-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/9076472","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rotating Machinery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/9076472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 4

Abstract

Rotating stall axial compressor is a difficult research field full of controversy. Over the recent decades, the unsteady tip leakage flows had been discovered and confirmed by several research groups independently. This paper summarizes the research experience on unsteady tip leakage flows and stability enhancement in axial flow compressors. The goal is to provide theoretical bases to design casing treatments and tip air injection for stall margin extension of axial compressor. The research efforts cover (1) the tip flow structure at near stall that can explain why the tip leakage flows go unsteady and (2) the computational and experimental evidences that demonstrate the axial momentum playing an important role in unsteady tip leakage flow. It was found that one of the necessary conditions for tip leakage flow to become unsteady is that a portion of the leakage flow impinges onto the pressure side of the neighboring blade near the leading edge. The impediment of the tip leakage flow against the main incoming flow can be measured by the axial momentum balance within the tip range. With the help of the theoretical progress, the applications are extended to various casing treatments and tip air recirculation.
轴流压缩机叶尖振荡泄漏流及其稳定性增强
旋转失速轴流压缩机是一个充满争议的难点研究领域。近几十年来,几个研究小组独立地发现并证实了非定常叶尖泄漏流动。总结了轴流压气机叶尖非定常泄漏流动及增强稳定性的研究经验。目的是为轴流压气机扩展失速余量的机匣处理和叶尖喷气设计提供理论依据。研究工作包括:(1)近失速时叶尖流动结构可以解释叶尖泄漏流动不稳定的原因;(2)轴向动量在叶尖非定常泄漏流动中起重要作用的计算和实验证据。研究发现,叶尖泄漏流发生非定常的必要条件之一是有一部分泄漏流撞击邻近叶片前缘附近的压力侧。叶尖范围内的轴向动量平衡可以测量叶尖泄漏流对主来流的阻碍。在理论进展的帮助下,将其应用范围扩展到各种机匣处理和叶顶空气再循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
10
审稿时长
25 weeks
期刊介绍: This comprehensive journal provides the latest information on rotating machines and machine elements. This technology has become essential to many industrial processes, including gas-, steam-, water-, or wind-driven turbines at power generation systems, and in food processing, automobile and airplane engines, heating, refrigeration, air conditioning, and chemical or petroleum refining. In spite of the importance of rotating machinery and the huge financial resources involved in the industry, only a few publications distribute research and development information on the prime movers. This journal is the first source to combine the technology, as it applies to all of these specialties, previously scattered throughout literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信