Procedures for Analyzing Multidimensional Mixture Data.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2023-12-01 Epub Date: 2023-02-16 DOI:10.1177/00131644231151470
Hsu-Lin Su, Po-Hsi Chen
{"title":"Procedures for Analyzing Multidimensional Mixture Data.","authors":"Hsu-Lin Su, Po-Hsi Chen","doi":"10.1177/00131644231151470","DOIUrl":null,"url":null,"abstract":"<p><p>The multidimensional mixture data structure exists in many test (or inventory) conditions. Heterogeneity also relatively exists in populations. Still, some researchers are interested in deciding to which subpopulation a participant belongs according to the participant's factor pattern. Thus, in this study, we proposed three analysis procedures based on the factor mixture model to analyze data in the multidimensional mixture context. Simulations were manipulated with different levels of factor numbers, factor correlations, numbers of latent classes, and class separation. Issues with regard to model selection were discussed at first. The results showed that in the two-class situations the procedures of \"factor structure first then class number\" (Procedure 1) and \"factor structure and class number considered simultaneously\" (Procedure 3) performed better than the \"class number first then factor structure\" (Procedure 2) and yielded precise parameter estimation and classification accuracy. It would be appropriate to choose Procedures 1 and 3 when strong measurement invariance is assumed while using an information criterion, but Procedure 1 saved more time than Procedure 3. In the three-class situations, the performance of all three procedures was limited. Implementations and suggestions have been addressed in this research.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638979/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644231151470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The multidimensional mixture data structure exists in many test (or inventory) conditions. Heterogeneity also relatively exists in populations. Still, some researchers are interested in deciding to which subpopulation a participant belongs according to the participant's factor pattern. Thus, in this study, we proposed three analysis procedures based on the factor mixture model to analyze data in the multidimensional mixture context. Simulations were manipulated with different levels of factor numbers, factor correlations, numbers of latent classes, and class separation. Issues with regard to model selection were discussed at first. The results showed that in the two-class situations the procedures of "factor structure first then class number" (Procedure 1) and "factor structure and class number considered simultaneously" (Procedure 3) performed better than the "class number first then factor structure" (Procedure 2) and yielded precise parameter estimation and classification accuracy. It would be appropriate to choose Procedures 1 and 3 when strong measurement invariance is assumed while using an information criterion, but Procedure 1 saved more time than Procedure 3. In the three-class situations, the performance of all three procedures was limited. Implementations and suggestions have been addressed in this research.

多维混合数据分析程序
多维混合物数据结构存在于许多测试(或库存)条件下。种群中也相对存在异质性。尽管如此,一些研究人员还是有兴趣根据参与者的因素模式来决定参与者属于哪个亚群体。因此,在本研究中,我们提出了三种基于因子混合模型的分析程序来分析多维混合背景下的数据。模拟采用不同水平的因子数、因子相关性、潜在类数和类分离进行操作。首先讨论了有关型号选择的问题。结果表明,在两种分类情况下,“因子结构先类数”(程序1)和“因子结构和类数同时考虑”(程序3)的处理效果优于“类数先因子结构”(程序2),并产生了精确的参数估计和分类精度。当在使用信息标准时假设强测量不变性时,选择程序1和3是合适的,但程序1比程序3节省了更多的时间。在这三种情况下,所有三种程序的执行都是有限的。在这项研究中提出了实施和建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信