Engineered gene networks enable non-genetic drug resistance and enhanced cellular robustness

Brendan Camellato, Ian J. Roney, Afnan Azizi, Daniel Charlebois, Mads Kaern
{"title":"Engineered gene networks enable non-genetic drug resistance and enhanced cellular robustness","authors":"Brendan Camellato,&nbsp;Ian J. Roney,&nbsp;Afnan Azizi,&nbsp;Daniel Charlebois,&nbsp;Mads Kaern","doi":"10.1049/enb.2019.0009","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Drug resistance complicates the treatment of cancer and infectious diseases, and often arises from the elevated expression of a gene that neutralises or reduces drug activity. To investigate this and other expression-based mechanisms of drug resistance, the authors engineered a set of gene regulatory networks in the eukaryotic model organism <i>Saccharomyces cerevisiae</i> to control a homologue of the cancer-related human multidrug resistance gene <i>MDR1</i>. Using this system, they explored experimentally how different gene regulatory network features, also called genetic network motifs, contribute to gene expression dynamics and cellular fitness. They observed that coherent feedforward and positive feedback motifs enable rapid and self-sustained activation of gene expression, and enhance cell survival in the presence of a cytotoxic drug. These observations underscore that genetic network motifs can be critical for drug resistance and that genetic network engineering can be used to enhance cellular tolerance to cytotoxins or other environmental stresses.</p>\n </div>","PeriodicalId":72921,"journal":{"name":"Engineering biology","volume":"3 4","pages":"72-79"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/enb.2019.0009","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/enb.2019.0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Drug resistance complicates the treatment of cancer and infectious diseases, and often arises from the elevated expression of a gene that neutralises or reduces drug activity. To investigate this and other expression-based mechanisms of drug resistance, the authors engineered a set of gene regulatory networks in the eukaryotic model organism Saccharomyces cerevisiae to control a homologue of the cancer-related human multidrug resistance gene MDR1. Using this system, they explored experimentally how different gene regulatory network features, also called genetic network motifs, contribute to gene expression dynamics and cellular fitness. They observed that coherent feedforward and positive feedback motifs enable rapid and self-sustained activation of gene expression, and enhance cell survival in the presence of a cytotoxic drug. These observations underscore that genetic network motifs can be critical for drug resistance and that genetic network engineering can be used to enhance cellular tolerance to cytotoxins or other environmental stresses.

Abstract Image

工程基因网络使非遗传耐药性和增强细胞稳健性成为可能
耐药性使癌症和传染病的治疗复杂化,而且往往是由于一种中和或减少药物活性的基因的表达升高而产生的。为了研究这种和其他基于表达的耐药机制,作者在真核模式生物酿酒酵母中设计了一套基因调控网络来控制癌症相关的人类多药耐药基因MDR1的同源物。利用这一系统,他们通过实验探索了不同的基因调控网络特征(也称为遗传网络基序)如何影响基因表达动态和细胞适应度。他们观察到,前后一致的前馈和正反馈基序能够快速和自我持续地激活基因表达,并在细胞毒性药物存在的情况下提高细胞存活率。这些观察结果强调,基因网络基序对耐药性至关重要,基因网络工程可用于增强细胞对细胞毒素或其他环境胁迫的耐受性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信