Interface asymptotics of Partial Bergman kernels around a critical level

IF 0.8 4区 数学 Q2 MATHEMATICS
S. Zelditch, Peng Zhou
{"title":"Interface asymptotics of Partial Bergman kernels around a critical level","authors":"S. Zelditch, Peng Zhou","doi":"10.4310/arkiv.2019.v57.n2.a12","DOIUrl":null,"url":null,"abstract":"In a recent series of articles (arXiv:1604.06655, arXiv:1708.09267), the authors have studied the transition behavior of partial Bergman kernels $\\Pi_{k, [E_1, E_2]}(z,w)$ and the associated DOS (density of states) $\\Pi_{k, [E_1, E_2]}(z)$ across the interface $\\ccal$ between the allowed and forbidden regions. Partial Bergman kernels are Toeplitz Hamiltonians quantizing Morse functions $H: M \\to \\R$ on a \\kahler manifold. The allowed region is $H^{-1}([E_1, E_2])$ and the interface $\\ccal$ is its boundary. In prior articles it was assumed that the endpoints $E_j$ were regular values of $H$. This article completes the series by giving parallel results when an endpoint is a critical value of $H$. In place of the Erf scaling asymptotics in a $k^{-\\half} $ tube around $\\ccal$ for regular interfaces, one obtains $\\delta$-asymptotics in $k^{-\\frac{1}{4}}$-tubes around singular points of a critical interface. In $k^{-\\half}$ tubes, the transition law is given by the osculating metaplectic propagator.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2019.v57.n2.a12","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

Abstract

In a recent series of articles (arXiv:1604.06655, arXiv:1708.09267), the authors have studied the transition behavior of partial Bergman kernels $\Pi_{k, [E_1, E_2]}(z,w)$ and the associated DOS (density of states) $\Pi_{k, [E_1, E_2]}(z)$ across the interface $\ccal$ between the allowed and forbidden regions. Partial Bergman kernels are Toeplitz Hamiltonians quantizing Morse functions $H: M \to \R$ on a \kahler manifold. The allowed region is $H^{-1}([E_1, E_2])$ and the interface $\ccal$ is its boundary. In prior articles it was assumed that the endpoints $E_j$ were regular values of $H$. This article completes the series by giving parallel results when an endpoint is a critical value of $H$. In place of the Erf scaling asymptotics in a $k^{-\half} $ tube around $\ccal$ for regular interfaces, one obtains $\delta$-asymptotics in $k^{-\frac{1}{4}}$-tubes around singular points of a critical interface. In $k^{-\half}$ tubes, the transition law is given by the osculating metaplectic propagator.
临界水平附近部分Bergman核的界面渐近性
在最近的一系列文章(arXiv:1604.06655, arXiv:1708.09267)中,作者研究了部分Bergman核的跃迁行为 $\Pi_{k, [E_1, E_2]}(z,w)$ 以及相关的DOS(状态密度) $\Pi_{k, [E_1, E_2]}(z)$ 跨界面 $\ccal$ 在允许和禁止的区域之间。部分Bergman核是量子化Morse函数的Toeplitz hamilton量 $H: M \to \R$ 在… \kahler 歧管。允许的区域为 $H^{-1}([E_1, E_2])$ 还有界面 $\ccal$ 是它的边界。在前面的文章中,假设端点 $E_j$ 的常规值 $H$。本文通过给出端点为临界值时的并行结果来完成该系列 $H$。代替了a中的Erf缩放渐近 $k^{-\half} $ 管周围 $\ccal$ 对于常规接口,可以得到 $\delta$-渐近性 $k^{-\frac{1}{4}}$-临界界面奇异点周围的管。在 $k^{-\half}$ 在管中,跃迁定律由接触微塑性传播子给出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信