{"title":"Adaptive soft sensor based on transfer learning and ensemble learning for multiple process states","authors":"Nobuhito Yamada, Hiromasa Kaneko","doi":"10.1002/ansa.202200013","DOIUrl":null,"url":null,"abstract":"<p>The objective of this study is to develop an adaptive software sensor technique that can predict objective process variables for a target grade in a plant while also considering information related to various other grades. We use a dataset of the target grade as the target domain and those of the other grades as source domains to perform transfer learning. Multiple models or sub-models are constructed by setting a source domain for each grade and changing the number of samples used as the source domain. Furthermore, to prevent the negative transfer, the use of a source domain is automatically judged. In this study, we constructed sub-models using the locally weighted partial least squares approach as an adaptive soft sensor technique. The values of an objective variable were predicted with ensemble learning using sub-models. The effectiveness of the proposed method was verified using a dataset measured in an actual incineration plant, and the proposed method was able to accurately predict the product quality even when the plant was operated in five grades and when a new grade was produced.</p>","PeriodicalId":93411,"journal":{"name":"Analytical science advances","volume":"3 5-6","pages":"205-211"},"PeriodicalIF":3.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/ansa.202200013","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical science advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ansa.202200013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study is to develop an adaptive software sensor technique that can predict objective process variables for a target grade in a plant while also considering information related to various other grades. We use a dataset of the target grade as the target domain and those of the other grades as source domains to perform transfer learning. Multiple models or sub-models are constructed by setting a source domain for each grade and changing the number of samples used as the source domain. Furthermore, to prevent the negative transfer, the use of a source domain is automatically judged. In this study, we constructed sub-models using the locally weighted partial least squares approach as an adaptive soft sensor technique. The values of an objective variable were predicted with ensemble learning using sub-models. The effectiveness of the proposed method was verified using a dataset measured in an actual incineration plant, and the proposed method was able to accurately predict the product quality even when the plant was operated in five grades and when a new grade was produced.