Alex Lamers , Sunitha Devi. S , Monica Sharma , Robbie Berg , José Manuel Gálvez , Zifeng Yu , Tarik Kriat , Sareti Cardos , David Grant , Lorenzo A. Moron
{"title":"Forecasting tropical cyclone rainfall and flooding hazards and impacts","authors":"Alex Lamers , Sunitha Devi. S , Monica Sharma , Robbie Berg , José Manuel Gálvez , Zifeng Yu , Tarik Kriat , Sareti Cardos , David Grant , Lorenzo A. Moron","doi":"10.1016/j.tcrr.2023.06.005","DOIUrl":null,"url":null,"abstract":"<div><p>This review summarizes the rapporteur report on advances in monitoring and forecasting of rainfall associated with tropical cyclones (TCs) and its impact during 2014–18, as presented to the 10th International Workshop on TCs (IWTC-10) held in Bali, Indonesia during 5th – 9th December 2022. Major physical processes that can modulate TC rainfall distribution, including topography, storm motion, vertical wind shear, and intensity, along with the fundamental physics of rain bands and clouds as simulated by numerical models, diurnal variation of rainfall, and various synoptic and mesoscale features controlling the rainfall distribution are briefly discussed. Improvements to the dynamic core and physical processes in global models are providing useable forecasts nearly up to 7 days. This report also summarizes, some tools that have been developed to predict TC rainfall. Lately there is a tendency for operational forecasting centers to utilize multi-model ensemble systems for rainfall forecasting that demonstrate superior performance than individual models, ensemble members, or even single model ensembles. Major impacts include pluvial and fluvial floods, and landslides. The techniques developed by various forecasting centers to assist in predicting and communicating the impacts associated with these events are also presented in this report.</p></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"12 2","pages":"Pages 100-112"},"PeriodicalIF":2.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Cyclone Research and Review","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225603223000267","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
This review summarizes the rapporteur report on advances in monitoring and forecasting of rainfall associated with tropical cyclones (TCs) and its impact during 2014–18, as presented to the 10th International Workshop on TCs (IWTC-10) held in Bali, Indonesia during 5th – 9th December 2022. Major physical processes that can modulate TC rainfall distribution, including topography, storm motion, vertical wind shear, and intensity, along with the fundamental physics of rain bands and clouds as simulated by numerical models, diurnal variation of rainfall, and various synoptic and mesoscale features controlling the rainfall distribution are briefly discussed. Improvements to the dynamic core and physical processes in global models are providing useable forecasts nearly up to 7 days. This report also summarizes, some tools that have been developed to predict TC rainfall. Lately there is a tendency for operational forecasting centers to utilize multi-model ensemble systems for rainfall forecasting that demonstrate superior performance than individual models, ensemble members, or even single model ensembles. Major impacts include pluvial and fluvial floods, and landslides. The techniques developed by various forecasting centers to assist in predicting and communicating the impacts associated with these events are also presented in this report.
期刊介绍:
Tropical Cyclone Research and Review is an international journal focusing on tropical cyclone monitoring, forecasting, and research as well as associated hydrological effects and disaster risk reduction. This journal is edited and published by the ESCAP/WMO Typhoon Committee (TC) and the Shanghai Typhoon Institute of the China Meteorology Administration (STI/CMA). Contributions from all tropical cyclone basins are welcome.
Scope of the journal includes:
• Reviews of tropical cyclones exhibiting unusual characteristics or behavior or resulting in disastrous impacts on Typhoon Committee Members and other regional WMO bodies
• Advances in applied and basic tropical cyclone research or technology to improve tropical cyclone forecasts and warnings
• Basic theoretical studies of tropical cyclones
• Event reports, compelling images, and topic review reports of tropical cyclones
• Impacts, risk assessments, and risk management techniques related to tropical cyclones