Design of sound absorbers based on open-cell foams via microstructure-based modeling

IF 0.6 4区 物理与天体物理 Q4 ACOUSTICS
V. Trinh, Thien-Van Nguyen, T. Nguyen, Minh-Tan Nguyen
{"title":"Design of sound absorbers based on open-cell foams via microstructure-based modeling","authors":"V. Trinh, Thien-Van Nguyen, T. Nguyen, Minh-Tan Nguyen","doi":"10.24425/aoa.2022.142894","DOIUrl":null,"url":null,"abstract":"Effects of microstructure factors on the acoustic performance of open-cell foams can be characterized numerically by a microstructure-based approach. To this regard, the numerical homogenization approach and the equivalent-fluid theory are employed to study the acoustic behavior of random open-cell foams within their Voronoi tessellation-based Representative Volume Elements (RVE). As a validation step, the numerical predictions are compared with the reference findings to either verify the finite element procedure or demonstrate that the constructed RVE can capture both the local geometrical characteristics and the acoustic macro-behavior of cellular solid foams. It can be seen from the obtained results that the morphological characteristics of open-cell foams could be controlled to achieve the desired sound absorbing behavior. In addition, the analytical expressions, formulating the relationship between the geometry of foam absorbers and their target absorption performance, are established to design sound absorbing foam layers.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Acoustics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.24425/aoa.2022.142894","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Effects of microstructure factors on the acoustic performance of open-cell foams can be characterized numerically by a microstructure-based approach. To this regard, the numerical homogenization approach and the equivalent-fluid theory are employed to study the acoustic behavior of random open-cell foams within their Voronoi tessellation-based Representative Volume Elements (RVE). As a validation step, the numerical predictions are compared with the reference findings to either verify the finite element procedure or demonstrate that the constructed RVE can capture both the local geometrical characteristics and the acoustic macro-behavior of cellular solid foams. It can be seen from the obtained results that the morphological characteristics of open-cell foams could be controlled to achieve the desired sound absorbing behavior. In addition, the analytical expressions, formulating the relationship between the geometry of foam absorbers and their target absorption performance, are established to design sound absorbing foam layers.
基于微结构建模的开孔泡沫吸声器设计
微结构因素对开孔泡沫材料声学性能的影响可以通过基于微结构的方法进行数值表征。为此,采用数值均匀化方法和等效流体理论研究了随机开孔泡沫在基于Voronoi细分的代表性体积单元(RVE)中的声学行为。作为验证步骤,将数值预测结果与参考结果进行比较,以验证有限元程序或证明所构建的RVE可以捕获胞状固体泡沫的局部几何特征和声学宏观行为。从得到的结果可以看出,开孔泡沫的形态特征是可以控制的,以达到理想的吸声性能。此外,建立了泡沫吸声器几何形状与其目标吸声性能之间关系的解析表达式,用于吸声泡沫层的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Acoustics
Archives of Acoustics 物理-声学
CiteScore
1.80
自引率
11.10%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Archives of Acoustics, the peer-reviewed quarterly journal publishes original research papers from all areas of acoustics like: acoustical measurements and instrumentation, acoustics of musics, acousto-optics, architectural, building and environmental acoustics, bioacoustics, electroacoustics, linear and nonlinear acoustics, noise and vibration, physical and chemical effects of sound, physiological acoustics, psychoacoustics, quantum acoustics, speech processing and communication systems, speech production and perception, transducers, ultrasonics, underwater acoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信