Proposing a Hybrid Thermal Management System Based on Phase Change Material/Metal Foam for Lithium-Ion Batteries

IF 2.6 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Soheil Saeedipour, A. Gharehghani, Jabraeil Ahbabi Saray, A. M. Andwari, Maciej Mikulski
{"title":"Proposing a Hybrid Thermal Management System Based on Phase Change Material/Metal Foam for Lithium-Ion Batteries","authors":"Soheil Saeedipour, A. Gharehghani, Jabraeil Ahbabi Saray, A. M. Andwari, Maciej Mikulski","doi":"10.3390/wevj14090240","DOIUrl":null,"url":null,"abstract":"The charging and discharging process of batteries generates a significant amount of heat, which can adversely affect their lifespan and safety. This study aims to enhance the performance of a lithium-ion battery (LIB) pack with a high discharge rate (5C) by proposing a combined battery thermal management system (BTMS) consisting of improved phase change materials (paraffin/aluminum composite) and forced-air convection. Battery thermal performance is simulated using computational fluid dynamics (CFD) to study the effects of heat transfer and flow parameters. To evaluate the impact of essential parameters on the thermal performance of the battery module, temperature uniformity and maximum temperature in the cells are evaluated. For the proposed cooling system, an ambient temperature of 24.5 °C and the application of a 3 mm thick paraffin/aluminum composite showed the best cooling effect. In addition, a 2 m/s inlet velocity with 25 mm cell spacing provided the best cooling performance, thus reducing the maximum temperature. The paraffin can effectively manage thermal parameters maintaining battery temperature stability and uniformity. Simulation results demonstrated that the proposed cooling system combined with forced-air convection, paraffin, and metal foam effectively reduced the maximum temperature and temperature difference in the battery by 308 K and 2.0 K, respectively.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Electric Vehicle Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wevj14090240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

The charging and discharging process of batteries generates a significant amount of heat, which can adversely affect their lifespan and safety. This study aims to enhance the performance of a lithium-ion battery (LIB) pack with a high discharge rate (5C) by proposing a combined battery thermal management system (BTMS) consisting of improved phase change materials (paraffin/aluminum composite) and forced-air convection. Battery thermal performance is simulated using computational fluid dynamics (CFD) to study the effects of heat transfer and flow parameters. To evaluate the impact of essential parameters on the thermal performance of the battery module, temperature uniformity and maximum temperature in the cells are evaluated. For the proposed cooling system, an ambient temperature of 24.5 °C and the application of a 3 mm thick paraffin/aluminum composite showed the best cooling effect. In addition, a 2 m/s inlet velocity with 25 mm cell spacing provided the best cooling performance, thus reducing the maximum temperature. The paraffin can effectively manage thermal parameters maintaining battery temperature stability and uniformity. Simulation results demonstrated that the proposed cooling system combined with forced-air convection, paraffin, and metal foam effectively reduced the maximum temperature and temperature difference in the battery by 308 K and 2.0 K, respectively.
基于相变材料/金属泡沫的锂离子电池混合热管理系统研究
电池的充放电过程会产生大量的热量,这会对电池的使用寿命和安全性产生不利影响。本研究旨在通过提出一种由改进相变材料(石蜡/铝复合材料)和强制空气对流组成的组合式电池热管理系统(BTMS),提高高放电率(5C)的锂离子电池(LIB)电池组的性能。采用计算流体力学(CFD)对电池热性能进行了模拟,研究了传热和流动参数对电池热性能的影响。为了评估关键参数对电池模块热性能的影响,评估了电池单元内的温度均匀性和最高温度。对于所提出的冷却系统,环境温度为24.5℃,使用3mm厚的石蜡/铝复合材料冷却效果最佳。此外,2米/秒的进口速度和25毫米的电池间距提供了最佳的冷却性能,从而降低了最高温度。石蜡可以有效地管理热参数,保持电池温度的稳定性和均匀性。仿真结果表明,采用强制空气对流、石蜡和金属泡沫的冷却系统可有效降低电池最高温度308 K,降低电池温差2.0 K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
World Electric Vehicle Journal
World Electric Vehicle Journal Engineering-Automotive Engineering
CiteScore
4.50
自引率
8.70%
发文量
196
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信